The plasma proteome preceding diabetes can improve our understanding of diabetes pathogenesis.


In 8,923 Atherosclerosis Risk in Communities (ARIC) Study participants (aged 47–70 years, 57% women, 19% Black), we conducted discovery and internal validation for associations of 4,955 plasma proteins with incident diabetes. We externally validated results in the Singapore Multi-Ethnic Cohort (MEC) nested case-control (624 case subjects, 1,214 control subjects). We used Cox regression to discover and validate protein associations and risk-prediction models (elastic net regression with cardiometabolic risk factors and proteins) for incident diabetes. We conducted a pathway analysis and examined causality using genetic instruments.


There were 2,147 new diabetes cases over a median of 19 years. In the discovery sample (n = 6,010), 140 proteins were associated with incident diabetes after adjustment for 11 risk factors (P < 10−5). Internal validation (n = 2,913) showed 64 of the 140 proteins remained significant (P < 0.05/140). Of the 63 available proteins, 47 (75%) were validated in MEC. Novel associations with diabetes were found for 22 the 47 proteins. Prediction models (27 proteins selected by elastic net) developed in discovery had a C statistic of 0.731 in internal validation, with ΔC statistic of 0.011 (P = 0.04) beyond 13 risk factors, including fasting glucose and HbA1c. Inflammation and lipid metabolism pathways were overrepresented among the diabetes-associated proteins. Genetic instrument analyses suggested plasma SHBG, ATP1B2, and GSTA1 play causal roles in diabetes risk.


We identified 47 plasma proteins predictive of incident diabetes, established causal effects for 3 proteins, and identified diabetes-associated inflammation and lipid pathways with potential implications for diagnosis and therapy.

This article contains supplementary material online at https://doi.org/10.2337/figshare.21801163.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
You do not currently have access to this content.