OBJECTIVE

Data from the Type 1 Diabetes Exercise Initiative Pediatric (T1DEXIP) study were evaluated to understand glucose changes during activity and identify factors that may influence changes.

RESEARCH DESIGN AND METHODS

In this real-world observational study, adolescents with type 1 diabetes self-reported physical activity, food intake, and insulin dosing (multiple-daily injection users) using a smartphone application. Heart rate and continuous glucose monitoring data were collected, as well as pump data downloads.

RESULTS

Two hundred fifty-one adolescents (age 14 ± 2 years [mean ± SD]; HbA1c 7.1 ± 1.3% [54 ± 14.2 mmol/mol]; 42% female) logged 3,738 activities over ∼10 days of observation. Preactivity glucose was 163 ± 66 mg/dL (9.1 ± 3.7 mmol/L), dropping to 148 ± 66 mg/dL (8.2 ± 3.7 mmol/L) by end of activity; median duration of activity was 40 min (20, 75 [interquartile range]) with a mean and peak heart rate of 109 ± 16 bpm and 130 ± 21 bpm. Drops in glucose were greater in those with lower baseline HbA1c levels (P = 0.002), shorter disease duration (P = 0.02), less hypoglycemia fear (P = 0.04), and a lower BMI (P = 0.05). Event-level predictors of greater drops in glucose included self-classified “noncompetitive” activities, insulin on board >0.05 units/kg body mass, glucose already dropping prior to the activity, preactivity glucose >150 mg/dL (>8.3 mmol/L) and time 70–180 mg/dL >70% in the 24 h before the activity (all P < 0.001).

CONCLUSIONS

Participant-level and activity event-level factors can help predict the magnitude of drop in glucose during real-world physical activity in youth with type 1 diabetes. A better appreciation of these factors may improve decision support tools and self-management strategies to reduce activity-induced dysglycemia in active adolescents living with the disease.

This article contains supplementary material online at https://doi.org/10.2337/figshare.24412009.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
You do not currently have access to this content.