OBJECTIVE

The aim of this study was to investigate the impact of the sodium–glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin on tissue fatty acid (FA) uptake in the skeletal muscle, brain, small intestine, and subcutaneous and visceral adipose tissue of individuals with type 2 diabetes by using positron emission tomography (PET).

RESEARCH DESIGN AND METHODS

In a 6-week randomized double-blind placebo-controlled trial, 53 patients with type 2 diabetes treated with metformin received either 10 mg dapagliflozin or placebo daily. Tissue FA uptake was quantified at baseline and end of treatment with PET and the long-chain FA analog radiotracer 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Treatment effects were assessed using ANCOVA, and the results are reported as least square means and 95% CIs for the difference between groups.

RESULTS

A total of 38 patients (dapagliflozin n = 21; placebo n = 17) completed the study. After 6 weeks, skeletal muscle FA uptake was increased by dapagliflozin compared with placebo (1.0 [0.07, 2.0] μmol ⋅ 100 g−1 ⋅ min−1; P = 0.032), whereas uptake was not significantly changed in the small intestine or visceral or subcutaneous adipose tissue. Dapagliflozin treatment significantly increased whole-brain FA uptake (0.10 [0.02, 0.17] μmol ⋅ 100 g−1 ⋅ min−1; P = 0.01), an effect observed in both gray and white matter regions.

CONCLUSIONS

Six weeks of treatment with dapagliflozin increases skeletal muscle and brain FA uptake, partly driven by a rise in free FA availability. This finding is in accordance with previous indirect measurements showing enhanced FA metabolism in response to SGLT2 inhibition and extends the notion of a shift toward increased FA use to muscle and brain.

Clinical trial reg. no. NCT03387683, clinicaltrials.gov

This article contains supplementary material online at https://doi.org/10.2337/figshare.26042449.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
You do not currently have access to this content.