OBJECTIVE

Plasma metabolite profiling has uncovered several nonglycemic markers of incident type 2 diabetes (T2D). We investigated whether such biomarkers provide information about specific aspects of T2D etiology, such as impaired fasting glucose and impaired glucose tolerance, and whether their association with T2D risk varies by race.

RESEARCH DESIGN AND METHODS

Untargeted plasma metabolite profiling was performed of participants in the FINRISK 2002 cohort (n = 7,564). Cox regression modeling was conducted to identify metabolites associated with incident T2D during 14 years of follow-up. Metabolites were clustered into pathways using Gaussian graphical modeling. Clusters enriched for T2D biomarkers were further examined for covariation with fasting plasma glucose (FPG), 2-h postchallenge plasma glucose (2hPG), HbA1c, or fasting insulin. Validation analyses and tests of interaction with race were performed in the Atherosclerosis Risk in Communities study.

RESULTS

Two clusters of metabolites, representing diacylglycerols (DAGs) and phosphatidylcholines (PCs), contained the largest number of metabolite associations with incident T2D. DAGs associated with increased T2D incidence (hazard ratio [HR] 1.22; 95% CI 1.14–1.30) independent of FPG, HbA1c, and fasting insulin, but not 2hPG. PCs were inversely associated with T2D risk (HR 0.78; 95% CI 0.71–0.85) independent of FPG, 2hPG, HbA1c, and fasting insulin. No significant interaction between DAGs or PCs and race was observed.

CONCLUSIONS

Fasting DAGs may capture information regarding T2D risk similar to that represented by 2hPG; PCs may capture aspects of T2D etiology that differ from those represented by conventional biomarkers. The direction of effect and strength of DAG and PC associations with incident T2D are similar across European and African Americans.

This article contains supplementary material online at https://doi.org/10.2337/figshare.28027814.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
You do not currently have access to this content.