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OBJECTIVEdAn artificial pancreas (AP) that automatically regulates blood glucose would
greatly improve the lives of individuals with diabetes. Such a device would prevent hypo- and
hyperglycemia along with associated long- and short-term complications as well as ease some of
the day-to-day burden of frequent blood glucose measurements and insulin administration.

RESEARCHDESIGNANDMETHODSdWe conducted a pilot clinical trial evaluating an
individualized, fully automated AP using commercial devices. Two trials (n = 22, nsubjects = 17)
were conducted using a multiparametric formulation of model predictive control and an insulin-
on-board algorithm such that the control algorithm, or “brain,” can be embedded on a chip as part
of a future mobile device. The protocol evaluated the control algorithm for three main challenges:
1) normalizing glycemia fromvarious initial glucose levels, 2)maintaining euglycemia, and 3) over-
coming an unannounced meal of 30 6 5 g carbohydrates.

RESULTSdInitial glucose values ranged from 84–251 mg/dL. Blood glucose was kept in the
near-normal range (80–180 mg/dL) for an average of 70% of the trial time. The low and high
blood glucose indices were 0.34 and 5.1, respectively.

CONCLUSIONSdThese encouraging short-term results reveal the ability of a control algo-
rithm tailored to an individual’s glucose characteristics to successfully regulate glycemia, even
when faced with unannouncedmeals or initial hyperglycemia. To our knowledge, this represents
the first truly fully automated multiparametric model predictive control algorithm with insulin-
on-board that does not rely on user intervention to regulate blood glucose in individuals with
type 1 diabetes.
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Type 1 diabetes is a chronic disease
that requires constant vigilance for
successful glucose control. Chronic

elevation or fluctuations in blood glucose
may result in a number of long-term
complications (blindness, kidney failure,
heart disease, stroke, and lower-extremity
amputations). Conversely, attempts to
aggressively normalize glucose concen-
trations increase the risk of severe hypo-
glycemia. Despite the introduction
of continuous subcutaneous insulin

infusion (CSII) pumps and programs
that promote intensive diabetes manage-
ment, the glycosylated hemoglobin, an
indicator of long-term blood glucose con-
trol reported by major diabetes treatment
centers, remains .8% (1). This value is
well above the current recommended goal
of,7% set forth by the American Diabe-
tes Association or ,6.5% recommended
by the American Association of Clinical
Endocrinologists (1). Many factors con-
tribute to this failure, including the

following: 1) difficulties in correctly esti-
mating the amount of carbohydrates in a
meal, 2) missed meal boluses, and 3) fear
of hypoglycemia that results in underin-
sulinization, especially overnight. As long
as diabetes treatment demands constant
direct intervention, the majority of indi-
viduals with diabetes will not meet the
established goals.

An artificial pancreas (AP) that can
control blood glucose without patient
intervention before meals or physical
activity may be an intermediate solution
until a cure for type 1 diabetes is discov-
ered. By removing active patient partici-
pation from the loop, a fully automated
AP would allow individuals with type 1
diabetes to go about their activities with-
out the need to check their blood glucose,
count carbohydrates, and take insulin
injections multiple times a day. The AP
comprises three main components: a con-
tinuous subcutaneous glucose monitor
(CGM), a CSII, and a mathematical con-
trol algorithm that processes data from
the glucose sensor and implements in-
sulin delivery. In fact, initial studies of
APs have demonstrated that subcutane-
ous sensors controlling CSII pumps
using a control algorithm can regulate
blood glucose in subjects with type 1
diabetes in carefully controlled research
settings (2–10).

There are multiple challenges to op-
timizing this system, including the fol-
lowing: 1) the accuracy and precision of
the CGM; 2) time lags in interstitial glu-
cose measurements, especially when
there are rapid changes in the glucose
concentrations; 3) delays in the onset of
insulin action after a subcutaneous injec-
tion; and 4) prolonged insulin action of
4–6 h following a subcutaneous injection.
A subcutaneous-subcutaneous AP, there-
fore, cannot fully mimic normal b-cell
function, but initial studies indicate that
it would better maintain diabetes control
than current open-loop methods.

Control algorithms, such as those
used to determine insulin delivery, usu-
ally are designed and tuned on the basis
of a mathematical model of the underly-
ing system. Models can range from simple
(rules describing whether an input
increases or decreases the output) to
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complex (sets of nonlinear partial differ-
ential equations detailing physiology).
These diverse modeling approaches con-
sider trade-offs between ease of design
and implementation and quality of per-
formance. In recent years, attempts were
made to design an AP system using
various control algorithms (11) from a
simple proportional-integral-derivative
control approach, as demonstrated by
Steil et al. (12) and Castle et al. (9), to a
fuzzy logic approach aimed at imitating
the decision-making process of a trained
physician, as published by Atlas et al. (3).
However, the control approach that
seems to be most advantageous and has
been widely used in recent years is model
predictive control (MPC), which Parker
et al. (13) first published for glucose con-
trol. The advantage of an MPC strategy is
its ability to incorporate an explicit model
of the glucose-insulin system. The con-
troller compares the model-predicted
output with the actual output (glucose
concentration), calculates the next ma-
nipulated input value (insulin delivery),
and updates the prediction with new
measurements at each control cycle.

Recent publications have demon-
strated the use of MPC to manage blood
glucose in single-hormone closed-loop
trials of up to 24 h, with encouraging
results (4,7,14–16). Other studies have
used a dual-hormone approach to mimic
normal physiology and reduce the likeli-
hood of postprandial hypoglycemia be-
cause of excessive insulin administration
(6,9). However, none of these studies
presented a design that had both control
and safety algorithms and could operate
as an autonomous system. Either a
manual glucose reading from the CGM,
manual administration of insulin by
the study personnel, or both was used
(4,6,9,14,15), or a three-pump system
with manual venous blood glucose input
was implemented (6). Atlas et al. (3) con-
tributed an AP design that relied on the
subject’s clinical parameters and medical
recommendation but lacked a safety
module to prevent overdosing of insulin.
Insulin was delivered without human in-
tervention in Atlas et al.; specifically, they
used the Artificial Pancreas System (APS)
to facilitate communication (17). The
need for both a systematic design of the
AP and the inclusion of more than one
algorithm to provide safe, effective glyce-
mic control has been recognized by
Kovatchev et al. (18). The AP that was
clinically evaluated in the studies presented
here was the first fully automated AP to

integrate both a multiparametric MPC
(mpMPC) algorithm that can be easily em-
bedded in a chip and a safety layer that
prevents overdelivery of insulin. The ob-
jective of the present study was to demon-
strate the feasibility of a system that would
not require user input for meals and
would be based solely on insulin delivery
(19,20).

RESEARCH DESIGN AND
METHODSdThe studies were de-
signed as pilot prospective trials to
evaluate a fully automated design of an
AP based on an mpMPC with insulin-on-
board (mpMPC-IOB) control algorithm.
The study was exploratory, allowing sub-
jects to come into the trial in real-life
settings without excessive control before-
hand. This allowed the controller to be
challenged with a variety of likely starting
points. Flexibility during initialization of
closed-loop control will be a critical ele-
ment in future commercial devices. Sev-
enteen subjects with type 1 diabetes were
recruited for the study: 7 from The Na-
tional Center for Childhood Diabetes of
Schneider Children’s Medical Center of
Israel (SCMC) and 10 from the Sansum
Diabetes Research Institute (SDRI).
Twenty-two in-clinic closed-loop trials
were conducted at SCMC and SDRI.
Four studies from SCMC were excluded
because of hardware failure or lack of ref-
erence blood glucose data. Fifteen sub-
jects (7 males and 8 females) with type 1
diabetes for 8–18 years participated in the
remaining 18 studies: 10 subjects at SDRI
and 3 at SCMCwere in a single study, and
2 at SCMC were in multiple studies.
Detailed results of each study are pre-
sented in Table 1, including demographic
information and clinical characteristics.
The average duration of the 18 studies
was 6.3 h (range 3.4–8.3 h). The study
was approved by the SCMC ethics com-
mittee for the SCMC studies and by both
the Food and Drug Administration
(through an investigational device ex-
emption [#G090129]) and the Santa
Barbara Cottage Hospital’s Institutional
Review Board for the SDRI studies. All
subjects listed in Table 1 signed an insti-
tutional review board-approved informed
consent form; the subject’s height and
weight as well as demographic data, dia-
betes history, and other significant medi-
cal history were recorded. Inclusion
criteria were a minimum age of 18
(SCMC) and 21 (SDRI) years, disease du-
ration of at least 1 year, and treatment
with an insulin pump for at least 6

months. Patients with a concomitant dis-
ease affecting metabolic control or who
had participated in another study for
drugs that could affect glucose measure-
ments or glucose management were ex-
cluded.

Closed-loop system
Communication among the CGM sensor,
the CSII pump, and the mathematical
algorithm was conducted using the APS
(17) to allow for flexible incorporation of
the control algorithm under investigation
and fully automated closed-loop studies
using commercial CGMs and commercial
or modified CSIIs. The system runs
within a MATLAB (The MathWorks,
Inc., Natick, MA) environment on a host
computer. In this study, the components
were used as follows: 1) interstitial glucose
concentrations were measured using un-
modified, Food and Drug Administration–
approved STS SEVEN and SEVEN PLUS
(Dexcom, Inc., San Diego, CA) CGMs; 2)
insulin was administered by a modified
Insulet personal diabetes manager and a
commercial OmniPod (Insulet, Bedford,
MA); 3) APS versions 2.5, 2.6, and 2.9
were used during the in-clinic closed-
loop trials; 4) reference intravenous blood
glucose levels were measured by the YSI
2300 STAT Plus (YSI, Inc./Xylem Inc.,
Yellow Springs, OH) every 30 min;
and 5) a short-acting insulin analog
(NovoRapid; Novo Nordisk, Bagsværd,
Denmark) was used in the clinical trials.

Personalized controller design
The MPC algorithm used for the clinical
studies (13) incorporated an explicit
model of human type 1 diabetes glu-
cose-insulin dynamics. MPC is a receding
horizon control strategy in which an op-
timization is performed at each time step.
If the optimization problem includes con-
straints, an iterative solver must be used
to find the optimal solution. Multipara-
metric programming allowed for the re-
formulation of the MPC problem into an
explicit form (21,22) where a single set of
optimizations can be performed a priori.
The resulting control lawwas implemented
in the form of a look-up table, with each
entry valid for a region in the state-space
representing the current state of the sys-
tem. Each entry corresponded to a simple
function that evaluated the state vector
and calculated the optimal insulin delivery
rate. The single degree of freedom for con-
troller tuning was the ratio of the tracking
error to the control move, which was set to
0.1 for all subjects. Software constraints
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ensured that insulin delivery rates were
bound between 0 and 72 U/h. At each
time step, glucose prediction for the next
36 steps and the insulin infusion rates for
the next 6 time steps were calculated.
Then, the insulin infusion for the current
time step was implemented. At the next
time step, on the basis of the new mea-
sured glucose value and the last insulin
rate, the process was repeated. An IOB
safety constraint presented by Ellingsen
et al. (23) was implemented as an upper
limit on the insulin delivery rate to prevent
insulin stacking. This maximum insulin
delivery rate was calculated on the basis
of nonlinear IOB decay curves (24) and
the subject’s correction factor (CF).

Before the closed-loop trial was initi-
ated, the look-up table for the control law
was developed in several stages. The sub-
ject first underwent open-loop monitor-
ing for 3 consecutive days before the
closed-loop session, during which CGM
measurements, insulin delivery rates,
blood glucose, physical activity, and car-
bohydrate consumption were recorded.
The data and corresponding insulin pro-
files from the patient’s insulin pump were
used as a basis for developing individual
models for the closed-loop controller.
These models were then evaluated based
on physiological knowledge of acceptable
parameter ranges. The best model was
chosen based on root-mean-square error
analysis of independent validation data.
This model was used in the mpMPC algo-
rithm (22,25–28).

In-clinic schedule
Two CGMs were inserted 1–2 days before
the in-clinic day. On the in-clinic day,
subjects were admitted at 7:00 AM in a
fasting condition with no food after
10:00 PM, unless needed to treat hypogly-
cemia (glucose,70 mg/dL), and no extra
bolus insulin after 3:00 AM. An unan-
nounced meal challenge was given if the
glucose level was maintained in the target
range for at least 40 min. At admission,
the subject’s insulin pump was removed
and replaced with an OmniPod system
that was connected to the APS. One
CGM was connected to the APS, and the
second one was used only if the primary
device failed during the study. The clini-
cal protocol evaluated the control algo-
rithm for three main challenges: 1)
normalizing glycemia from different start-
ing points at the near-normal range
tomild hyperglycemia, 2) maintaining eu-
glycemia at a target of 110 6 30 mg/dL,
and 3) overcoming an unannounced meal

of 30 6 5 g carbohydrates. The trial was
concluded when either challenge 1 and
challenge 2 or all three challenges were
addressed, resulting in varied trial dura-
tion among the cohort.

RESULTSdEighteen fully automated
closed-loop control sessions testing this
AP design using MPC were conducted at
SCMC and SDRI with no clinically ad-
verse events. Summaries of all the clinical
trials are shown in Fig. 2 and Table 1, with
detailed CGM, YSI, and insulin results for
all studies shown in Supplementary Figs.
1–18.

Representative examples of two of the
closed-loop studies with unannounced
meals are presented in Fig. 1A (study
number 15) and B (study number 10)
with glucose concentrations (CGM, YSI,
and finger sticks) in mg/dL presented in
the upper panels and controller insulin
suggestion in the lower panels. On the
right side of each main panel, a pie chart
shows the time in various glucose ranges
based on CGM (A1 and B1) and YSI (A2
and B2) measurements during the closed-
loop. Initial start-up conditions for each
subject varied as a reflection of daily glu-
cose variability among subjects, for exam-
ple, recovery from hyperglycemia for the
subject in Fig. 1B and in-target glucose
level for the subject in Fig. 1A. Time spent
in the tight range of 80–140 mg/dL
was 54.5 and 64.3% (as measured by
YSI) in Fig. 1A and B, respectively. Both
subjects in Fig. 1 had a low blood glucose
index (LBGI) of 0 and high blood glucose
index (HBGI) (29) of,4, as illustrated in
Table 1.

One of the main challenges of the
closed-loop design of an AP is to maintain
glycemia in the near-normal range (80–
180 mg/dL) when faced with unan-
nounced meals and without significant
hypo- or hyperglycemia. Traditionally,
the analysis of results is mainly based on
reference blood glucose (e.g., YSI) to re-
view the clinical application and perfor-
mance of closed-loop control. However,
one should also review and analyze CGM
results to obtain a better understanding of
closed-loop control performance that can
be achieved with current CGMs. Figure 2
shows the average and absolute maxi-
mum and minimum cumulative time in
range in outpatient versus closed-loop
CGM data (Fig. 2A and B) and closed-
loop CGM versus closed-loop YSI data
(Fig. 2C and D). The degree to which
the envelopes in Fig. 2A andC lie between
80–180 mg/dL indicates how much timeT
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was spent in range overall. The average
time as measured by YSI spent in the tight
and near-normal ranges for all trials was
36 and 70%, respectively (Fig. 2D), with
no values ,70 mg/dL.

A detailed analysis of the glucose
concentration distribution from both
outpatient and inpatient CGM data (Fig.

2B) provides statistical evidence (P ,
0.05) that closed-loop control minimized
hypoglycemia (,70 mg/dL), improved
the time in the near-normal range (140–
180 mg/dL), and reduced the time in se-
vere hyperglycemia (.250 mg/dL), even
though the sedentary inpatient condi-
tions limited insulin utilization. It should

be noted that meal sizes in the outpatient
setting were similar to the inpatient set-
ting, with 81 and 70% of the outpatient
meals,50 and ,40 g carbohydrates, re-
spectively. Comparing CGM to YSI re-
sults in Fig. 2C, the time in the 80–250
mg/dL range was almost identical,
whereas in the low and high ranges,

Figure 1dClinical results output from two closed-loop trials (study numbers 15 [A] and 10 [B]) demonstrating the ability of the design to effectively
and safely overcome daily challenges of individuals with type 1 diabetes, such as hyperglycemia, unannounced meals, and avoiding postprandial
hypoglycemia. For both cases, excellent automated glucose control was observed with 54.5 and 64.3% of the time in tight control (80–140 mg/dL).
BG, blood glucose.
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CGM values were not in absolute agree-
ment with the reference results (mean and
median absolute relative deviations 13.3
and 9.9%, respectively). Overall, al-
though no statistical significance can be
derived from this comparison, the results
suggest that current CGM technology can
be used for a fully automated AP when a
safety algorithm such as IOB is used to
prevent overdelivery of insulin. The con-
troller maintained glycemia in the safe
range (80–180 mg/dL) for an average 68
and 70% of the time under closed-loop
control according to the CGM and YSI

data, respectively. No hypoglycemia epi-
sodes were reported by YSI, and glucose
levels of ,70 mg/dL were reported only
2% of the time by CGM. Moderate post-
prandial hyperglycemia was reported by
YSI in only two trials, with postprandial
peaks of 251 and 263 mg/dL.

As shown in Table 1, the mean LBGI
and HBGI were, respectively, 0 and 5 by
YSI and 0.6 and 5.4 by CGM. Control
variability grid analysis (CVGA) (30) pro-
vides detailed results of the closed-loop
performance in terms of ability to avoid
both hypo- and hyperglycemia as

presented over nine categories (Table 1
and Fig. 3). The CVGA results of all
closed-loop trials were in the A and B
zones as measured by YSI, which suggest
excellent control. It is important to indi-
cate that these results represent the entire
duration of the trial, including initial and
postprandial glucose levels. As can
be noted in Table 1, in three trials, the
results of the CVGA based on CGM mea-
surement were in the lower D zone, sug-
gesting failure to manage hypoglycemia;
however, no glucose values ,70 mg/dL
were recorded by YSI.

Figure 2dPercent time in different glycemic ranges for all subjects for outpatient collected data versus study day data as measured by CGM (A and
B) and over the study day for all subjects as measured by CGM and YSI (C and D). No subjects experienced hypoglycemia, and they were in the safe
range (80–180 mg/dL) for an average of 70% of the time, with a fraction of time in the mild hyperglycemia range and negligible time in the hy-
perglycemia range, as measured by YSI. *Statistically significant at P , 0.05.
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Two subjects repeated the studymore
than once with minimal intrasubject var-
iability, showing the robustness of the
system. Subject 2 repeated the study three
times (studies 2–4). In none of these in-
stances did the subject experience hypo-
glycemia. In two studies, they had
relatively short duration (;4 h) and
had a majority of YSI and CGM values
in the 140–250 mg/dL range. In the third
study, the duration was 6 h, and the sub-
ject had a majority of values in the 80–
180 mg/dL range. CVGA results were in
the upper B or A regions for all three stud-
ies. Subject 3 repeated the study twice
(studies 5 and 8). This subject had very
similar duration and results for both stud-
ies, with CVGA results in the B region (see
Table 1 for detailed results).

CONCLUSIONSdWe have demon-
strated in this short-term pilot evaluation
that a fully automated AP device based on
personalized MPC with safety compo-
nents is capable of controlling glycemia
by delivering only insulin without post-
prandial hypoglycemia. Good glucose
control with 70% of the time in the
near-normal range (80–180 mg/dL) was
demonstrated in the face of daily chal-
lenges, such as starting closed-loop
control at different glucose values, over-
coming small unannounced meals, and
hyperglycemia in addition to the con-
straint of maintaining glucose control in
the near-normal range. Although the du-
ration of the trials after meals was rela-
tively short (;2 h), no subsequent
hypoglycemia was observed, as can be
seen in the insulin and glucose tracings
in Supplementary Figs. 1–18 and Table
1. Two cases (5 and 11) had a negative
rate of fall as measured by the CGM at
the end of the study, suggesting an im-
pending trend toward hypoglycemia.
The risk of late (poststudy protocol) hy-
poglycemia could not be completely
avoided but was addressed by the proto-
col, which required the subject to eat a
snack and exhibit glucose values $90
mg/dL before release followed by a call-
back on the next day. In all cases, no sig-
nificant hypoglycemia episodes were
reported during the callback. Meal cor-
rections were given by the controller
based on the glycemic state, with post-
prandial delivery equaling 0.2–1.4 times
the insulin expected if using conventional
therapy, although it is recognized that
CFs and insulin-to-carbohydrate ratios
are only estimates and may result in either
under- or overdelivery. Subcutaneous

Figure 3dCVGA before and after the study for CGM (A) and YSI (B).,, prestudy values;C,
study values. The prestudy values for the YSI CVGA were finger-stick values. The nine categories
within the CVGA grid represent different levels of control as follows: accurate control (A-zone),
benign deviation into hypoglycemia (lower B-zone), benign deviation into the hyperglyce-
mia range (upper B-zone), benign control (B-zone), overcorrection of hyperglycemia (lower
C-zone), overcorrection of hypoglycemia (upper C-zone), failure to manage hypoglycemia
(lower D-zone), failure to manage hyperglycemia (upper D-zone), and erroneous control
(E-zone).
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insulin delivery was based on interstitial
glucose information; the controller was
constrained as needed from excessive de-
livery of insulin, as demonstrated by the
insulin delivery and dynamic IOB con-
straint results shown in Fig. 1A and B.
Such a combination may be an effective
trade-off in control design in that elevated
glucose levels are treated aggressively while
safety is maintained. Ideal glycemic control
after unannounced, high carbohydrate
meals is not feasible with the current delays
associated with subcutaneously delivered
insulin.

The model for the control algorithm
was developed using ambulatory data
only. The control law was evaluated off
line for all possible scenarios, thus min-
imizing on-line computation. Tuning was
based on “trust” in the model, and as a
result, the closed-loop trials often were
at the limit of the IOB safety constraint.
The IOB safety constraint was “tuned” us-
ing the subject’s CF; hence, it is conceiv-
able that future trials could tune the
controller on the basis of the CF only. In
the future, the AP controller will be upda-
ted as part of modifying insulin therapy
during physician visits, using pump, sen-
sor, and food diary data.

Closed-loop control transformed glu-
cose variability to insulin variability as
indicated in the lower panel of Fig. 1A,
where the controller overcame the small
unannounced meal without overdelivery
of insulin as a result of the dynamic IOB
constraint. The nature of intersubject var-
iability in type 1 diabetes is demonstrated
in Fig. 1B, where the closed loop started
when the subject was in the hyperglyce-
mia zone. The combination of mpMPC
and IOB allowed the controller to facili-
tate recovery from hyperglycemia while
restricting subsequent delivery of basal
insulin without overdelivering. The AP
managed to safely overcome this challenge
as well as the unannounced meal with ex-
cellent glucose control. For this subject,
85.7% of the time was spent within 80–
180 mg/dL (as measured by YSI).

As can be seen in Fig. 2A, the closed-
loop cumulative glucose plot is narrow
between 80 and 180 mg/dL where the
outpatient CGM region spreads between
70 and 400 mg/dL. Although we ac-
knowledge that the inpatient and outpa-
tient conditions were not identical, the
feasibility of the AP device to overcome
the challenges set forth in the study was
illustrated by the improvement of glucose
control in inpatient versus outpatient set-
tings. In addition, inpatient meals were

largely of comparable size to outpatient
meal records, and the sedentary nature
of the inpatient setting presented more
of a challenge in overcoming unan-
nounced meals than in the ambulatory
outpatient setting. In Fig. 2C, the average
cumulative glucose tracing is almost iden-
tical, with a narrower spread in the YSI
tracing than in the CGM tracing.

We have demonstrated a systematic
design of the AP that meets the predefined
requirements of full automation, safe
regulation of glycemia without any hu-
man intervention, use of insulin only, and
ability to be incorporated into a future
portable device. The design of a future AP
needs to follow a top-down approach that
addresses control challenges as part of the
system layout. Such a system needs to
address issues with CGM accuracy and
signal interferences to overcome sluggish
insulin kinetics and control for physical
activity. These challenges are currently
being studied in clinical trials of longer
duration that will transition from in-clinic
to ambulatory clinical studies.
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