Recommendations

  • People with diabetes should receive diabetes self-management education (DSME) and diabetes self-management support (DSMS) according to the national standards for DSME and DSMS when their diabetes is diagnosed and as needed thereafter. B

  • Effective self-management and quality of life are the key outcomes of DSME and DSMS and should be measured and monitored as part of care. C

  • DSME and DSMS should address psychosocial issues, as emotional well-being is associated with positive diabetes outcomes. C

  • DSME and DSMS programs are appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the onset of diabetes. C

  • Because DSME and DSMS can result in cost-savings and improved outcomes B, DSME and DSMS should be adequately reimbursed by third-party payers. E

DSME and DSMS are the ongoing processes of facilitating the knowledge, skill, and ability necessary for diabetes self-care. This process incorporates the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSME and DSMS are to support informed decision making, self-care behaviors, problem solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (1).

DSME and DSMS are essential elements of diabetes care (2,3), and the current national standards for DSME and DSMS (1) are based on evidence of their benefits. Education helps people with diabetes initiate effective self-management and cope with diabetes when they are first diagnosed. Ongoing DSME and DSMS also help people with diabetes maintain effective self-management throughout a lifetime of diabetes as they face new challenges and as treatment advances become available. DSME enables patients (including youth) to optimize metabolic control, prevent and manage complications, and maximize quality of life in a cost-effective manner (2,4).

Current best practice of DSME is a skill-based approach that focuses on helping those with diabetes make informed self-management choices (1,2). DSME has changed from a didactic approach focusing on providing information to empowerment models that focus on helping those with diabetes make informed self-management decisions (2). Diabetes care has shifted to an approach that is more patient centered and places the person with diabetes and his or her family at the center of the care model, working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values and ensures that patient values guide all decision making (5).

Evidence for the Benefits

Multiple studies have found that DSME is associated with improved diabetes knowledge, improved self-care behavior (1), improved clinical outcomes, such as lower A1C (3,68), lower self-reported weight (9,10), improved quality of life (8,11), healthy coping (12,13), and lower costs (14,15). Better outcomes were reported for DSME interventions that were longer and included follow-up support (DSMS) (1618), that were culturally (19,20) and age appropriate (21,22), that were tailored to individual needs and preferences, and that addressed psychosocial issues and incorporated behavioral strategies (2,12,23,24). Both individual and group approaches have been found effective (10,25). There is growing evidence for the role of community health workers (26), as well as peer (2730) and lay leaders (31), in delivering DSME and DSMS (32).

Diabetes education is associated with increased use of primary and preventive services (14,33,34) and lower use of acute, inpatient hospital services (14). Patients who participate in diabetes education are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and insurance claim costs (15,33).

National Standards

The national standards for DSME and DSMS are designed to define quality and to assist diabetes educators in a variety of settings to provide evidence-based education and self-management support (1). The standards are reviewed and updated every 5 years by a task force representing key organizations involved in diabetes education and care.

Reimbursement

DSME, when provided by a program that meets national standards for DSME and is recognized by the American Diabetes Association (ADA) or other approval bodies, is reimbursed as part of the Medicare program as overseen by the Centers for Medicare & Medicaid Services. DSME is also covered by most health insurance plans. Although DSMS has been shown to be instrumental for improving outcomes and can be provided via phone calls and telehealth, it currently has limited reimbursement as in-person follow-up to DSME.

For many individuals with diabetes, the most challenging part of the treatment plan is determining what to eat. It is the position of the ADA that there is not a one-size-fits-all eating pattern for individuals with diabetes. The ADA also recognizes the integral role of nutrition therapy in overall diabetes management and recommends that each person with diabetes be actively engaged in self-management, education, and treatment planning with his or her health care provider, which includes the collaborative development of an individualized eating plan (35,36). Therefore, it is important that all members of the health care team be knowledgeable about diabetes nutrition therapy and support its implementation. See Table 4.1 for specific nutrition recommendations.

Goals of Nutrition Therapy for Adults With Diabetes

  1. To promote and support healthful eating patterns, emphasizing a variety of nutrient-dense foods in appropriate portion sizes, in order to improve overall health and specifically to

    • Attain individualized glycemic, blood pressure, and lipid goals

    • Achieve and maintain body weight goals

    • Delay or prevent complications of diabetes

  2. To address individual nutrition needs based on personal and cultural preferences, health literacy and numeracy, access to healthful food choices, willingness and ability to make behavioral changes, and barriers to change.

  3. To maintain the pleasure of eating by providing positive messages about food choices while limiting food choices only when indicated by scientific evidence.

  4. To provide the individual with diabetes with practical tools for day-to-day meal planning rather than focusing on individual macronutrients, micronutrients, or single foods.

Nutrition therapy is an integral component of diabetes prevention, management, and self-management education. All individuals with diabetes should receive individualized medical nutrition therapy (MNT), preferably provided by a registered dietitian who is knowledgeable and skilled in providing diabetes MNT. Comprehensive group diabetes education programs including nutrition therapy or individualized education sessions have reported A1C decreases of 0.3–1% for type 1 diabetes (3741) and 0.5–2% for type 2 diabetes (4249).

Carbohydrate Management

Individuals with type 1 diabetes should be offered intensive insulin therapy education using the carbohydrate-counting meal planning approach (37,39,40,43,50), which has been shown to improve glycemic control (50,51). Consistent carbohydrate intake with respect to time and amount can result in improved glycemic control for individuals using fixed daily insulin doses (36). A simple diabetes meal planning approach, such as portion control or healthful food choices, may be better suited for individuals with health literacy and numeracy concerns (3640,42).

Weight Loss

Intensive lifestyle programs with frequent follow-up are required to achieve significant reductions in excess body weight and improve clinical indicators (52,53). Weight loss of 2–8 kg may provide clinical benefits in those with type 2 diabetes, especially early in the disease process (52,53). Although several studies resulted in improvements in A1C at 1 year (52,5456), not all weight-loss interventions led to 1-year A1C improvements (45,5760). The most consistently identified changes in cardiovascular risk factors were an increase in HDL cholesterol (52,54,56,59,61), decrease in triglycerides (52,6163), and decrease in blood pressure (52,54,57,59,61).

Weight-loss studies have used a variety of energy-restricted eating patterns, with no clear evidence that one eating pattern or optimal macronutrient distribution was ideal, suggesting that macronutrient proportions should be individualized (64). Studies show that people with diabetes eat on average about 45% of their calories from carbohydrates, ∼36–40% of calories from fat, and ∼16–18% from protein (5759). A variety of eating patterns have been shown to be effective in managing diabetes, including Mediterranean-style (53,65), Dietary Approaches to Stop Hypertension (DASH)-style (66), and plant-based (vegan or vegetarian) (67), lower-fat (68), and lower-carbohydrate patterns (68).

Macronutrients

Carbohydrates

Studies examining the ideal amount of carbohydrate intake for people with diabetes are inconclusive, although monitoring carbohydrate intake and considering the available insulin are key strategies for improving postprandial glucose control (37,69). The literature concerning glycemic index and glycemic load in individuals with diabetes is complex, although reductions in A1C of −0.2% to −0.5% have been demonstrated in some studies (64,70). A systematic review (64) found consumption of whole grains was not associated with improvements in glycemic control in people with type 2 diabetes, although it may reduce systemic inflammation. One study did find a potential benefit of whole-grain intake in reducing mortality and cardiovascular disease (CVD) (71).

Proteins

For people with diabetes and no evidence of diabetic kidney disease, the evidence is inconclusive about recommending an ideal amount of protein for optimizing glycemic control or for improving one or more CVD risk measures (64). Therefore, these goals should be individualized. For people with diabetes and diabetic kidney disease (with albuminuria), reducing the amount of dietary protein below usual intake is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the course of glomerular filtration rate decline (72,73). In individuals with type 2 diabetes, ingested protein appears to increase insulin response without increasing plasma glucose concentrations (74). Therefore, carbohydrate sources high in protein should not be used to treat or prevent hypoglycemia. Protein’s effect on blood glucose levels in type 1 diabetes is less clear.

Fats

Limited research exists concerning the ideal amount of fat for individuals with diabetes. The Institute of Medicine has defined an acceptable macronutrient distribution range for all adults for total fat of 20–35% of energy with no tolerable upper intake level defined (75). The type of fatty acids consumed is more important than total amount of fat when looking at metabolic goals and risk of CVD (53,76,77). Multiple randomized controlled trials including patients with type 2 diabetes have reported improved glycemic control and/or blood lipids when a Mediterranean-style eating pattern, rich in monounsaturated fatty acid, was consumed (53,57,78,79). A systematic review (64) concluded that supplementation with omega-3 fatty acids did not improve glycemic control but that higher dose supplementation decreased triglycerides in individuals with type 2 diabetes. Randomized controlled trials also do not support recommending omega-3 supplements for primary or secondary prevention of CVD (8085). People with diabetes should be advised to follow the guidelines for the general population for the recommended intakes of saturated fat, dietary cholesterol, and trans fat (86).

Sodium

A review found that decreasing sodium intake reduces blood pressure in those with diabetes (87). Incrementally lowering sodium intake (i.e., to 1,500 mg/day) has shown beneficial effects on blood pressure (8789). The American Heart Association recommends 1,500 mg/day for African Americans, people diagnosed with hypertension, diabetes, or chronic kidney disease, and those over 51 years of age (90). However, other studies (88,89) have warranted caution for universal sodium restriction to 1,500 mg in this population. For individuals with diabetes and hypertension, setting a sodium intake goal of <2,300 mg/day should be considered on an individual basis. Sodium intake recommendations should take into account palatability, availability, additional cost of specialty low-sodium products, and the difficulty of achieving both low-sodium recommendations and a nutritionally adequate diet (86).

For complete discussion and references of all recommendations, see the ADA position statement “Nutrition Therapy Recommendations for the Management of Adults With Diabetes” (36).

Recommendations

  • Children with diabetes or prediabetes should be encouraged to engage in at least 60 min of physical activity each day. B

  • Adults with diabetes should be advised to perform at least 150 min/week of moderate-intensity aerobic physical activity (50–70% of maximum heart rate), spread over at least 3 days/week with no more than 2 consecutive days without exercise. A

  • Evidence supports that all individuals, including those with diabetes, should be encouraged to reduce sedentary time, particularly by breaking up extended amounts of time (>90 min) spent sitting. B

  • In the absence of contraindications, adults with type 2 diabetes should be encouraged to perform resistance training at least twice per week. A

Exercise is an important part of the diabetes management plan. Regular exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being. Furthermore, regular exercise may prevent type 2 diabetes in high-risk individuals (9193). Structured exercise interventions of at least 8 weeks’ duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even with no significant change in BMI (94). There are considerable data for the health benefits (e.g., increased cardiovascular fitness, muscle strength, improved insulin sensitivity, etc.) of regular physical activity for those with type 1 diabetes (95). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (96). Other benefits include slowing the decline in mobility among overweight patients with diabetes (97). “Exercise and Type 2 Diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint Position Statement Executive Summary” reviews the evidence for the benefits of exercise in people with type 2 diabetes (98).

Exercise and Children

As is recommended for all children, children with diabetes or prediabetes should be encouraged to engage in at least 60 min of physical activity each day. Included in the 60 min each day, children should engage in vigorous-intensity aerobic activity, muscle-strengthening activities, and bone-strengthening activities at least 3 of those days (99).

Frequency and Type of Exercise

The U.S. Department of Health and Human Services’ physical activity guidelines for Americans (100) suggest that adults over age 18 years do 150 min/week of moderate-intensity or 75 min/week of vigorous-intensity aerobic physical activity, or an equivalent combination of the two. In addition, the guidelines suggest that adults also do muscle-strengthening activities that involve all major muscle groups 2 or more days/week. The guidelines suggest that adults over age 65 years, or those with disabilities, follow the adult guidelines if possible or, if this is not possible, be as physically active as they are able.

Recent evidence supports that all individuals, including those with diabetes, should be encouraged to reduce the amount of time spent being sedentary (e.g., working at a computer, watching TV) particularly by breaking up extended amounts of time (>90 min) spent sitting (101).

Exercise and Glycemic Control

Based on physical activity studies that include people with diabetes, it seems reasonable to recommend that people with diabetes follow the physical activity guidelines as for the general population. For example, studies included in the meta-analysis of effects of exercise interventions on glycemic control (94) had a mean of 3.4 sessions/week, with a mean of 49 min/session. Also, the Diabetes Prevention Program (DPP) lifestyle intervention included 150 min/week of moderate-intensity exercise and showed beneficial effect on glycemia in those with prediabetes (91).

Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (98) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (102,103). If not contraindicated, patients with type 2 diabetes should be encouraged to do at least two weekly sessions of resistance exercise (exercise with free weights or weight machines), with each session consisting of at least one set of five or more different resistance exercises involving the large muscle groups (98).

Pre-exercise Evaluation

As discussed more fully in Section 8. Cardiovascular Disease and Risk Management, the best protocol for screening asymptomatic diabetic patients for coronary artery disease (CAD) remains unclear. The ADA consensus report “Screening for Coronary Artery Disease in Patients With Diabetes” (104) on this issue concluded that routine screening is not recommended. Providers should use clinical judgment in this area. Certainly, high-risk patients should be encouraged to start with short periods of low-intensity exercise and slowly increase the intensity and duration. Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, severe autonomic neuropathy, severe peripheral neuropathy, a history of foot lesions, and unstable proliferative retinopathy. The patient’s age and previous physical activity level should be considered. For type 1 diabetic patients, the provider should customize the exercise regimen to the individual’s needs. Those with complications may require a more thorough evaluation (95).

Exercise in the Presence of Nonoptimal Glycemic Control

Hyperglycemia

When individuals with type 1 diabetes are deprived of insulin for 12–48 h and are ketotic, exercise can worsen hyperglycemia and ketosis (105); therefore, vigorous activity should be avoided with ketosis. However, it is not necessary to postpone exercise based simply on hyperglycemia, provided the patient feels well and urine and/or blood ketones are negative.

Hypoglycemia

In individuals taking insulin and/or insulin secretagogues, physical activity can cause hypoglycemia if medication dose or carbohydrate consumption is not altered. For individuals on these therapies, added carbohydrate should be ingested if pre-exercise glucose levels are <100 mg/dL (5.6 mmol/L). Hypoglycemia is less common in diabetic patients who are not treated with insulin or insulin secretagogues, and no preventive measures for hypoglycemia are usually advised in these cases.

Exercise in the Presence of Specific Long-Term Complications of Diabetes

Retinopathy

If proliferative diabetic retinopathy or severe nonproliferative diabetic retinopathy is present, then vigorous aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (106).

Peripheral Neuropathy

Decreased pain sensation and a higher pain threshold in the extremities result in an increased risk of skin breakdown and infection and of Charcot joint destruction with some forms of exercise. However, studies have shown that moderate-intensity walking may not lead to an increased risk of foot ulcers or reulceration in those with peripheral neuropathy (107). In addition, 150 min/week of moderate exercise was reported to improve outcomes in patients with milder forms of neuropathy (106). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non–weight-bearing activities.

Autonomic Neuropathy

Autonomic neuropathy can increase the risk of exercise-induced injury or adverse event through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and higher susceptibility to hypoglycemia (108). Cardiovascular autonomic neuropathy is also an independent risk factor for cardiovascular death and silent myocardial ischemia (109). Therefore, individuals with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.

Albuminuria and Nephropathy

Physical activity can acutely increase urinary protein excretion. However, there is no evidence that vigorous exercise increases the rate of progression of diabetic kidney disease, and there appears to be no need for specific exercise restrictions for people with diabetic kidney disease (106).

Recommendations

  • Advise all patients not to smoke or use tobacco products. A

  • Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. B

Results from epidemiological, case-control, and cohort studies provide convincing evidence to support the causal link between cigarette smoking and health risks. Much of the work documenting the effect of smoking on health does not separately discuss results on subsets of individuals with diabetes, but it does suggest that the identified risks are at least equivalent to those found in the general population. Other studies of individuals with diabetes consistently demonstrate that smokers (and people exposed to secondhand smoke) have a heightened risk of CVD, premature death, and the microvascular complications of diabetes. Smoking may have a role in the development of type 2 diabetes (110). One study in smokers with newly diagnosed type 2 diabetes found that smoking cessation was associated with amelioration of metabolic parameters and reduced blood pressure and albuminuria at 1 year (111).

The routine and thorough assessment of tobacco use is essential to prevent smoking or encourage cessation. Numerous large randomized clinical trials have demonstrated the efficacy and cost-effectiveness of brief counseling in smoking cessation, including the use of quit lines, in reducing tobacco use. For the patient motivated to quit, the addition of pharmacological therapy to counseling is more effective than either treatment alone. Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in quitting and relapse (112). Although some patients may gain weight in the period shortly after smoking cessation, recent research has demonstrated that this weight gain does not diminish the substantial CVD risk benefit realized from smoking cessation (113).

There is no evidence that e-cigarettes are a healthier alternative to smoking or that e-cigarettes can facilitate smoking cessation. Rigorous study of their short- and long-term effects is needed in determining their safety and efficacy and their cardiopulmonary effects in comparison with smoking and standard approaches to smoking cessation (114).

Recommendations

  • Include assessment of the patient’s psychological and social situation as an ongoing part of the medical management of diabetes. B

  • Psychosocial screening and follow-up may include, but are not limited to, attitudes about the illness, expectations for medical management and outcomes, affect/mood, general and diabetes-related quality of life, resources (financial, social, and emotional), and psychiatric history. E

  • Routinely screen for psychosocial problems such as depression, diabetes-related distress, anxiety, eating disorders, and cognitive impairment. B

  • Older adults (aged ≥65 years) with diabetes should be considered a high-priority population for depression screening and treatment. B

  • Patients with comorbid diabetes and depression should receive a stepwise collaborative care approach for the management of depression. A

Emotional well-being is an important part of diabetes care and self-management. Psychological and social problems can impair the individual’s (115117) or family’s (118) ability to carry out diabetes care tasks and therefore compromise health status. There are opportunities for the clinician to routinely assess psychosocial status in a timely and efficient manner so that referral for appropriate services can be accomplished. A systematic review and meta-analysis showed that psychosocial interventions modestly but significantly improved A1C (standardized mean difference −0.29%) and mental health outcomes. However, there was a limited association between the effects on A1C and mental health, and no intervention characteristics predicted benefit on both outcomes (119).

Screening

Key opportunities for routine screening of psychosocial status occur at diagnosis, during regularly scheduled management visits, during hospitalizations, with new-onset complications, or when problems with glucose control, quality of life, or self-management are identified. Patients are likely to exhibit psychological vulnerability at diagnosis, when their medical status changes (e.g., end of the honeymoon period), when the need for intensified treatment is evident, and when complications are discovered. Depression affects about 20–25% of people with diabetes (120) and increases the risk for myocardial infarction and postmyocardial infarction (121) and all-cause mortality (122). There appears to be a bidirectional relationship between depression and both diabetes (123) and metabolic syndrome (124).

Diabetes-related distress is distinct from clinical depression and is very common (125127) among people with diabetes and their family members (118). Prevalence is reported as 18–45%, with an incidence of 38–48% over 18 months. High levels of distress are significantly linked to A1C, self-efficacy, dietary and exercise behaviors (13,126), and medication adherence (128). Other issues known to impact self-management and health outcomes include, but are not limited to, attitudes about the illness, expectations for medical management and outcomes, anxiety, general and diabetes-related quality of life, resources (financial, social, and emotional) (129), and psychiatric history (130). Screening tools are available for a number of these areas (23,131,132).

Referral to Mental Health Specialist

Indications for referral to a mental health specialist familiar with diabetes management may include gross disregard for the medical regimen (by self or others) (133), depression, overall stress related to work-life balance, possibility of self-harm, debilitating anxiety (alone or with depression), indications of an eating disorder (134), or cognitive functioning that significantly impairs judgment. It is preferable to incorporate psychological assessment and treatment into routine care rather than waiting for a specific problem or deterioration in metabolic or psychological status (23,125). In the Second Diabetes Attitudes, Wishes and Needs (DAWN2) study, significant diabetes-related distress was reported by 44.6% of the participants, but only 23.7% reported that their health care team asked them how diabetes impacted their life (125).

Although the clinician may not feel qualified to treat psychological problems (135), optimizing the patient-provider relationship as a foundation can increase the likelihood that the patient will accept referral for other services. Collaborative care interventions and use of a team approach have demonstrated efficacy in diabetes and depression (136,137). Interventions to enhance self-management and address severe distress have demonstrated efficacy in diabetes-related distress (13).

Recommendations

  • Provide routine vaccinations for children and adults with diabetes as for the general population. C

  • Annually provide an influenza vaccine to all patients with diabetes ≥6 months of age. C

  • Administer pneumococcal polysaccharide vaccine 23 (PPSV23) to all patients with diabetes ≥2 years of age. C

  • Adults ≥65 years of age, if not previously vaccinated, should receive pneumococcal conjugate vaccine 13 (PCV13), followed by PPSV23 6–12 months after initial vaccination. C

  • Adults ≥65 years of age, if previously vaccinated with PPSV23, should receive a follow-up ≥12 months with PCV13. C

  • Administer hepatitis B vaccination to unvaccinated adults with diabetes who are aged 19–59 years. C

  • Consider administering hepatitis B vaccination to unvaccinated adults with diabetes who are aged ≥60 years. C

As for the general population, all children and adults with diabetes should receive routine vaccinations (138,139). Influenza and pneumonia are common, preventable infectious diseases associated with high mortality and morbidity in vulnerable populations, such as the young and the elderly, and in people with chronic diseases. Although there are limited studies reporting the morbidity and mortality of influenza and pneumococcal pneumonia specifically in people with diabetes, observational studies of patients with a variety of chronic illnesses, including diabetes, show that these conditions are associated with an increase in hospitalizations for influenza and its complications. People with diabetes may be at an increased risk of the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, with a mortality rate as high as 50% (140). In a case-control series, influenza vaccine was shown to reduce diabetes-related hospital admission by as much as 79% during flu epidemics (141). There is sufficient evidence to support that people with diabetes have appropriate serologic and clinical responses to these vaccinations. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices recommends influenza and pneumococcal vaccines for all individuals with diabetes (http://www.cdc.gov/vaccines/recs).

Pneumococcal Vaccines in Older Adults

The ADA endorses a recent CDC advisory panel that recommends that both PCV13 and PPSV23 should be administered routinely in series to all adults 65 years of age or older (142).

Pneumococcal Vaccine-Naïve People

Adults 65 years of age or older who have not previously received pneumococcal vaccine or whose previous vaccination history is unknown should receive a dose of PCV13 first, followed by PPSV23. A dose of PPSV23 should be given 6–12 months following a dose of PCV13. If PPSV23 cannot be given within this time period, a dose of PPSV23 should be given during the next visit. The two vaccines should not be coadministered, and the minimum interval between vaccine dosing should be 8 weeks.

Previous Vaccination With PPSV23

Adults 65 years of age or older who previously have received one or more doses of PPSV23 should also receive PCV13 if they have not yet received it. PCV13 should be given no sooner than 12 months after receipt of the most recent PPSV23 dose. For those for whom an additional dose of PPSV23 is indicated, this subsequent PPSV23 dose should be given 6–12 months after PCV13 and at least 5 years since the most recent dose of PPSV23.

Suggested citation: American Diabetes Association. Foundations of care: education, nutrition, physical activity, smoking cessation, psychosocial care, and immunization. Sec. 4. In Standards of Medical Care in Diabetes—2015. Diabetes Care 2015;38(Suppl. 1):S20–S30

1.
Haas
L
,
Maryniuk
M
,
Beck
J
, et al
.
National standards for diabetes self-management education and support
.
Diabetes Care
2013
;
37
(
Suppl. 1
):
S144
S153
2.
Marrero
DG
,
Ard
J
,
Delamater
AM
, et al
.
Twenty-first century behavioral medicine: a context for empowering clinicians and patients with diabetes: a consensus report
.
Diabetes Care
2013
;
36
:
463
470
3.
Norris
SL
,
Lau
J
,
Smith
SJ
,
Schmid
CH
,
Engelgau
MM
.
Self-management education for adults with type 2 diabetes: a meta-analysis of the effect on glycemic control
.
Diabetes Care
2002
;
25
:
1159
1171
4.
Martin
D
,
Lange
K
,
Sima
A
, et al
SWEET group
.
Recommendations for age-appropriate education of children and adolescents with diabetes and their parents in the European Union
.
Pediatr Diabetes
2012
;
13
(
Suppl. 16
):
20
28
5.
Committee on Quality of Health Care in America
Institute of Medicine
. Crossing the Quality Chasm: A New Health System for the 21st Century [Internet],
Washington, DC
:
National Academies Press
,
2001
. Available from http://www.iom.edu/Reports/2001/Crossing-the-Quality-Chasm-A-New-Health-System-for-the-21st-Century.aspx. Accessed 1 October 2014
6.
Barker
JM
,
Goehrig
SH
,
Barriga
K
, et al
DAISY Study
.
Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up
.
Diabetes Care
2004
;
27
:
1399
1404
7.
Frosch
DL
,
Uy
V
,
Ochoa
S
,
Mangione
CM
.
Evaluation of a behavior support intervention for patients with poorly controlled diabetes
.
Arch Intern Med
2011
;
171
:
2011
2017
8.
Cooke
D
,
Bond
R
,
Lawton
J
, et al
U.K. NIHR DAFNE Study Group
.
Structured type 1 diabetes education delivered within routine care: impact on glycemic control and diabetes-specific quality of life
.
Diabetes Care
2013
;
36
:
270
272
9.
Steinsbekk
A
,
Rygg
,
Lisulo
M
,
Rise
MB
,
Fretheim
A
.
Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis
.
BMC Health Serv Res
2012
;
12
:
213
10.
Deakin
TA
,
McShane
CE
,
Cade
JE
,
Williams
R
.
Group based training for self-management strategies in people with type 2 diabetes mellitus
.
Cochrane Database Syst Rev
2005
;
2
:CD003417
11.
Cochran
J
,
Conn
VS
.
Meta-analysis of quality of life outcomes following diabetes self-management training
.
Diabetes Educ
2008
;
34
:
815
823
12.
Thorpe
CT
,
Fahey
LE
,
Johnson
H
,
Deshpande
M
,
Thorpe
JM
,
Fisher
EB
.
Facilitating healthy coping in patients with diabetes: a systematic review
.
Diabetes Educ
2013
;
39
:
33
52
13.
Fisher
L
,
Hessler
D
,
Glasgow
RE
, et al
.
REDEEM: a pragmatic trial to reduce diabetes distress
.
Diabetes Care
2013
;
36
:
2551
2558
14.
Robbins
JM
,
Thatcher
GE
,
Webb
DA
,
Valdmanis
VG
.
Nutritionist visits, diabetes classes, and hospitalization rates and charges: the Urban Diabetes Study
.
Diabetes Care
2008
;
31
:
655
660
15.
Duncan
I
,
Ahmed
T
,
Li
QE
, et al
.
Assessing the value of the diabetes educator
.
Diabetes Educ
2011
;
37
:
638
657
16.
Piatt
GA
,
Anderson
RM
,
Brooks
MM
, et al
.
3-year follow-up of clinical and behavioral improvements following a multifaceted diabetes care intervention: results of a randomized controlled trial
.
Diabetes Educ
2010
;
36
:
301
309
17.
Tang
TS
,
Funnell
MM
,
Brown
MB
,
Kurlander
JE
.
Self-management support in “real-world” settings: an empowerment-based intervention
.
Patient Educ Couns
2010
;
79
:
178
184
18.
Renders
CM
,
Valk
GD
,
Griffin
SJ
,
Wagner
EH
,
Eijk Van
JT
,
Assendelft
WJ
.
Interventions to improve the management of diabetes in primary care, outpatient, and community settings: a systematic review
.
Diabetes Care
2001
;
24
:
1821
1833
19.
Glazier
RH
,
Bajcar
J
,
Kennie
NR
,
Willson
K
.
A systematic review of interventions to improve diabetes care in socially disadvantaged populations
.
Diabetes Care
2006
;
29
:
1675
1688
20.
Hawthorne
K
,
Robles
Y
,
Cannings-John
R
,
Edwards
AG
.
Culturally appropriate health education for type 2 diabetes mellitus in ethnic minority groups
.
Cochrane Database Syst Rev
2008
;
3
:CD006424
21.
Sarkisian
CA
,
Brown
AF
,
Norris
KC
,
Wintz
RL
,
Mangione
CM
.
A systematic review of diabetes self-care interventions for older, African American, or Latino adults
.
Diabetes Educ
2003
;
29
:
467
479
22.
Chodosh
J
,
Morton
SC
,
Mojica
W
, et al
.
Meta-analysis: chronic disease self-management programs for older adults
.
Ann Intern Med
2005
;
143
:
427
438
23.
Peyrot
M
,
Rubin
RR
.
Behavioral and psychosocial interventions in diabetes: a conceptual review
.
Diabetes Care
2007
;
30
:
2433
2440
24.
Naik
AD
,
Palmer
N
,
Petersen
NJ
, et al
.
Comparative effectiveness of goal setting in diabetes mellitus group clinics: randomized clinical trial
.
Arch Intern Med
2011
;
171
:
453
459
25.
Duke
S-AS
,
Colagiuri
S
,
Colagiuri
R
.
Individual patient education for people with type 2 diabetes mellitus
.
Cochrane Database Syst Rev
2009
;
1
:CD005268
26.
Shah
M
,
Kaselitz
E
,
Heisler
M
.
The role of community health workers in diabetes: update on current literature
.
Curr Diab Rep
2013
;
13
:
163
171
27.
Heisler
M
,
Vijan
S
,
Makki
F
,
Piette
JD
.
Diabetes control with reciprocal peer support versus nurse care management: a randomized trial
.
Ann Intern Med
2010
;
153
:
507
515
28.
Heisler
M
.
Overview of peer support models to improve diabetes self-management and clinical outcomes
.
Diabetes Spectrum
2007
;
20
:
214
221
29.
Long
JA
,
Jahnle
EC
,
Richardson
DM
,
Loewenstein
G
,
Volpp
KG
.
Peer mentoring and financial incentives to improve glucose control in African American veterans: a randomized trial
.
Ann Intern Med
2012
;
156
:
416
424
30.
Moskowitz
D
,
Thom
DH
,
Hessler
D
,
Ghorob
A
,
Bodenheimer
T
.
Peer coaching to improve diabetes self-management: which patients benefit most?
J Gen Intern Med
2013
;
28
:
938
942
31.
Foster
G
,
Taylor
SJC
,
Eldridge
SE
,
Ramsay
J
,
Griffiths
CJ
.
Self-management education programmes by lay leaders for people with chronic conditions
.
Cochrane Database Syst Rev
2007
4
:
CD005108
32.
Siminerio
L
,
Ruppert
KM
,
Gabbay
RA
.
Who can provide diabetes self-management support in primary care? Findings from a randomized controlled trial
.
Diabetes Educ
2013
;
39
:
705
713
33.
Duncan
I
,
Birkmeyer
C
,
Coughlin
S
,
Li
QE
,
Sherr
D
,
Boren
S
.
Assessing the value of diabetes education
.
Diabetes Educ
2009
;
35
:
752
760
34.
Johnson
TM
,
Murray
MR
,
Huang
Y
.
Associations between self-management education and comprehensive diabetes clinical care
.
Diabetes Spectrum
2010
;
23
:
41
46
35.
Inzucchi
SE
,
Bergenstal
RM
,
Buse
JB
, et al
American Diabetes Association (ADA)
European Association for the Study of Diabetes (EASD)
.
Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
.
Diabetes Care
2012
;
35
:
1364
1379
36.
Evert
AB
,
Boucher
JL
,
Cypress
M
, et al
.
Nutrition therapy recommendations for the management of adults with diabetes
.
Diabetes Care
2014
;
37
(
Suppl. 1
):
S120
S143
37.
DAFNE Study Group
.
Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: Dose Adjustment For Normal Eating (DAFNE) randomised controlled trial
.
BMJ
2002
;
325
:
746
38.
Kulkarni
K
,
Castle
G
,
Gregory
R
, et al
The Diabetes Care and Education Dietetic Practice Group
.
Nutrition practice guidelines for type 1 diabetes mellitus positively affect dietitian practices and patient outcomes
.
J Am Diet Assoc
1998
;
98
:
62
70; quiz 71–72
39.
Rossi
MCE
,
Nicolucci
A
,
Di Bartolo
P
, et al
.
Diabetes Interactive Diary: a new telemedicine system enabling flexible diet and insulin therapy while improving quality of life: an open-label, international, multicenter, randomized study
.
Diabetes Care
2010
;
33
:
109
115
40.
Laurenzi
A
,
Bolla
AM
,
Panigoni
G
, et al
.
Effects of carbohydrate counting on glucose control and quality of life over 24 weeks in adult patients with type 1 diabetes on continuous subcutaneous insulin infusion: a randomized, prospective clinical trial (GIOCAR)
.
Diabetes Care
2011
;
34
:
823
827
41.
Scavone
G
,
Manto
A
,
Pitocco
D
, et al
.
Effect of carbohydrate counting and medical nutritional therapy on glycaemic control in type 1 diabetic subjects: a pilot study
.
Diabet Med
2010
;
27
:
477
479
42.
UK Prospective Diabetes Study (UKPDS) Group
.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34)
.
Lancet
1998
;
352
:
854
865
43.
Rickheim
PL
,
Weaver
TW
,
Flader
JL
,
Kendall
DM
.
Assessment of group versus individual diabetes education: a randomized study
.
Diabetes Care
2002
;
25
:
269
274
44.
Ziemer
DC
,
Berkowitz
KJ
,
Panayioto
RM
, et al
.
A simple meal plan emphasizing healthy food choices is as effective as an exchange-based meal plan for urban African Americans with type 2 diabetes
.
Diabetes Care
2003
;
26
:
1719
1724
45.
Wolf
AM
,
Conaway
MR
,
Crowther
JQ
, et al
Improving Control with Activity and Nutrition (ICAN) Study
.
Translating lifestyle intervention to practice in obese patients with type 2 diabetes: Improving Control with Activity and Nutrition (ICAN) study
.
Diabetes Care
2004
;
27
:
1570
1576
46.
Nield
L
,
Moore
H
,
Hooper
L
, et al
.
Dietary advice for treatment of type 2 diabetes mellitus in adults
.
Cochrane Database Syst Rev
2007
;
3
:CD004097
47.
Davis
RM
,
Hitch
AD
,
Salaam
MM
,
Herman
WH
,
Zimmer-Galler
IE
,
Mayer-Davis
EJ
.
Telehealth improves diabetes self-management in an underserved community: diabetes Telecare
.
Diabetes Care
2010
;
33
:
1712
1717
48.
Coppell
KJ
,
Kataoka
M
,
Williams
SM
,
Chisholm
AW
,
Vorgers
SM
,
Mann
JI
.
Nutritional intervention in patients with type 2 diabetes who are hyperglycaemic despite optimised drug treatment–Lifestyle Over and Above Drugs in Diabetes (LOADD) study: randomised controlled trial
.
BMJ
2010
;
341
:c3337
49.
Franz
MJ
,
Monk
A
,
Barry
B
, et al
.
Effectiveness of medical nutrition therapy provided by dietitians in the management of non-insulin-dependent diabetes mellitus: a randomized, controlled clinical trial
.
J Am Diet Assoc
1995
;
95
:
1009
1017
50.
Sämann
A
,
Mühlhauser
I
,
Bender
R
,
Kloos
Ch
,
Müller
UA
.
Glycaemic control and severe hypoglycaemia following training in flexible, intensive insulin therapy to enable dietary freedom in people with type 1 diabetes: a prospective implementation study
.
Diabetologia
2005
;
48
:
1965
1970
51.
McIntyre
HD
,
Knight
BA
,
Harvey
DM
,
Noud
MN
,
Hagger
VL
,
Gilshenan
KS
.
Dose Adjustment For Normal Eating (DAFNE) - an audit of outcomes in Australia
.
Med J Aust
2010
;
192
:
637
640
52.
Pi-Sunyer
X
,
Blackburn
G
,
Brancati
FL
, et al
Look AHEAD Research Group
.
Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the Look AHEAD trial
.
Diabetes Care
2007
;
30
:
1374
1383
53.
Estruch
R
,
Ros
E
,
Salas-Salvadó
J
, et al
PREDIMED Study Investigators
.
Primary prevention of cardiovascular disease with a Mediterranean diet
.
N Engl J Med
2013
;
368
:
1279
1290
54.
Metz
JA
,
Stern
JS
,
Kris-Etherton
P
, et al
.
A randomized trial of improved weight loss with a prepared meal plan in overweight and obese patients: impact on cardiovascular risk reduction
.
Arch Intern Med
2000
;
160
:
2150
2158
55.
West
DS
,
DiLillo
V
,
Bursac
Z
,
Gore
SA
,
Greene
PG
.
Motivational interviewing improves weight loss in women with type 2 diabetes
.
Diabetes Care
2007
;
30
:
1081
1087
56.
Larsen
RN
,
Mann
NJ
,
Maclean
E
,
Shaw
JE
.
The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: a 12 month randomised controlled trial
.
Diabetologia
2011
;
54
:
731
740
57.
Brehm
BJ
,
Lattin
BL
,
Summer
SS
, et al
.
One-year comparison of a high-monounsaturated fat diet with a high-carbohydrate diet in type 2 diabetes
.
Diabetes Care
2009
;
32
:
215
220
58.
Davis
NJ
,
Tomuta
N
,
Schechter
C
, et al
.
Comparative study of the effects of a 1-year dietary intervention of a low-carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes
.
Diabetes Care
2009
;
32
:
1147
1152
59.
Guldbrand
H
,
Dizdar
B
,
Bunjaku
B
, et al
.
In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss
.
Diabetologia
2012
;
55
:
2118
2127
60.
Krebs
JD
,
Elley
CR
,
Parry-Strong
A
, et al
.
The Diabetes Excess Weight Loss (DEWL) Trial: a randomised controlled trial of high-protein versus high-carbohydrate diets over 2 years in type 2 diabetes
.
Diabetologia
2012
;
55
:
905
914
61.
Wing
RR
,
Bolin
P
,
Brancati
FL
, et al
Look AHEAD Research Group
.
Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes
.
N Engl J Med
2013
;
369
:
145
154
62.
Esposito
K
,
Maiorino
MI
,
Ciotola
M
, et al
.
Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: a randomized trial
.
Ann Intern Med
2009
;
151
:
306
314
63.
Li
TY
,
Brennan
AM
,
Wedick
NM
,
Mantzoros
C
,
Rifai
N
,
Hu
FB
.
Regular consumption of nuts is associated with a lower risk of cardiovascular disease in women with type 2 diabetes
.
J Nutr
2009
;
139
:
1333
1338
64.
Wheeler
ML
,
Dunbar
SA
,
Jaacks
LM
, et al
.
Macronutrients, food groups, and eating patterns in the management of diabetes: a systematic review of the literature, 2010
.
Diabetes Care
2012
;
35
:
434
445
65.
Elhayany
A
,
Lustman
A
,
Abel
R
,
Attal-Singer
J
,
Vinker
S
.
A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: a 1-year prospective randomized intervention study
.
Diabetes Obes Metab
2010
;
12
:
204
209
66.
Azadbakht
L
,
Fard
NRP
,
Karimi
M
, et al
.
Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: a randomized crossover clinical trial
.
Diabetes Care
2011
;
34
:
55
57
67.
Turner-McGrievy
GM
,
Barnard
ND
,
Cohen
J
,
Jenkins
DJA
,
Gloede
L
,
Green
AA
.
Changes in nutrient intake and dietary quality among participants with type 2 diabetes following a low-fat vegan diet or a conventional diabetes diet for 22 weeks
.
J Am Diet Assoc
2008
;
108
:
1636
1645
68.
Stern
L
,
Iqbal
N
,
Seshadri
P
, et al
.
The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: one-year follow-up of a randomized trial
.
Ann Intern Med
2004
;
140
:
778
785
69.
Delahanty
LM
,
Nathan
DM
,
Lachin
JM
, et al
Diabetes Control and Complications Trial/Epidemiology of Diabetes
.
Association of diet with glycated hemoglobin during intensive treatment of type 1 diabetes in the Diabetes Control and Complications Trial
.
Am J Clin Nutr
2009
;
89
:
518
524
70.
Thomas
D
,
Elliott
EJ
.
Low glycaemic index, or low glycaemic load, diets for diabetes mellitus
.
Cochrane Database Syst Rev
2009
;
1
:
CD006296
71.
He
M
,
van Dam
RM
,
Rimm
E
,
Hu
FB
,
Qi
L
.
Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus
.
Circulation
2010
;
121
:
2162
2168
72.
Pan
Y
,
Guo
LL
,
Jin
HM
.
Low-protein diet for diabetic nephropathy: a meta-analysis of randomized controlled trials
.
Am J Clin Nutr
2008
;
88
:
660
666
73.
Robertson
L
,
Waugh
N
,
Robertson
A
.
Protein restriction for diabetic renal disease
.
Cochrane Database Syst Rev
2007
;
4
:
CD002181
74.
Layman
DK
,
Clifton
P
,
Gannon
MC
,
Krauss
RM
,
Nuttall
FQ
.
Protein in optimal health: heart disease and type 2 diabetes
.
Am J Clin Nutr
2008
;
87
:
1571S
1575S
75.
Institute of Medicine
. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids [Internet],
2002
. Available from http://www.iom.edu/Reports/2002/Dietary-Reference-Intakes-for-Energy-Carbohydrate-Fiber-Fat-Fatty-Acids-Cholesterol-Protein-and-Amino-Acids.aspx. Accessed 1 October 2014
76.
Office of Disease Prevention and Health Promotion, U.S. Department of Health and Human Services. Dietary Guidelines for Americans [Internet], 2010. Available from http://www.health.gov/dietaryguidelines. Accessed 1 October 2014
77.
Ros
E
.
Dietary cis-monounsaturated fatty acids and metabolic control in type 2 diabetes
.
Am J Clin Nutr
2003
;
78
(
Suppl.
):
617S
625S
78.
Shai
I
,
Schwarzfuchs
D
,
Henkin
Y
, et al
Dietary Intervention Randomized Controlled Trial (DIRECT) Group
.
Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet
.
N Engl J Med
2008
;
359
:
229
241
79.
Brunerova
L
,
Smejkalova
V
,
Potockova
J
,
Andel
M
.
A comparison of the influence of a high-fat diet enriched in monounsaturated fatty acids and conventional diet on weight loss and metabolic parameters in obese non-diabetic and type 2 diabetic patients
.
Diabet Med
2007
;
24
:
533
540
80.
Harris
WS
,
Mozaffarian
D
,
Rimm
E
, et al
.
Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention
.
Circulation
2009
;
119
:
902
907
81.
Crochemore
ICC
,
Souza
AFP
,
de Souza
ACF
,
Rosado
EL
.
ω-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity
.
Nutr Clin Pract
2012
;
27
:
553
560
82.
Bot
M
,
Pouwer
F
,
Assies
J
,
Jansen
EHJM
,
Beekman
ATF
,
de Jonge
P
.
Supplementation with eicosapentaenoic omega-3 fatty acid does not influence serum brain-derived neurotrophic factor in diabetes mellitus patients with major depression: a randomized controlled pilot study
.
Neuropsychobiology
2011
;
63
:
219
223
83.
Holman
RR
,
Paul
S
,
Farmer
A
,
Tucker
L
,
Stratton
IM
,
Neil
HA
Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes Study Group
.
Atorvastatin in Factorial with Omega-3 EE90 Risk Reduction in Diabetes (AFORRD): a randomised controlled trial
.
Diabetologia
2009
;
52
:
50
59
84.
Kromhout
D
,
Geleijnse
JM
,
de Goede
J
, et al
.
n-3 fatty acids, ventricular arrhythmia-related events, and fatal myocardial infarction in postmyocardial infarction patients with diabetes
.
Diabetes Care
2011
;
34
:
2515
2520
85.
Bosch
J
,
Gerstein
HC
,
Dagenais
GR
, et al
ORIGIN Trial Investigators
.
n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia
.
N Engl J Med
2012
;
367
:
309
318
86.
Maillot
M
,
Drewnowski
A
.
A conflict between nutritionally adequate diets and meeting the 2010 dietary guidelines for sodium
.
Am J Prev Med
2012
;
42
:
174
179
87.
Bray
GA
,
Vollmer
WM
,
Sacks
FM
,
Obarzanek
E
,
Svetkey
LP
,
Appel
LJ
DASH Collaborative Research Group
.
A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: results of the DASH-Sodium Trial
.
Am J Cardiol
2004
;
94
:
222
227
88.
Thomas
MC
,
Moran
J
,
Forsblom
C
, et al
FinnDiane Study Group
.
The association between dietary sodium intake, ESRD, and all-cause mortality in patients with type 1 diabetes
.
Diabetes Care
2011
;
34
:
861
866
89.
Ekinci
EI
,
Clarke
S
,
Thomas
MC
, et al
.
Dietary salt intake and mortality in patients with type 2 diabetes
.
Diabetes Care
2011
;
34
:
703
709
90.
Whelton
PK
,
Appel
LJ
,
Sacco
RL
, et al
.
Sodium, blood pressure, and cardiovascular disease: further evidence supporting the American Heart Association sodium reduction recommendations
.
Circulation
2012
;
126
:
2880
2889
91.
Knowler
WC
,
Barrett-Connor
E
,
Fowler
SE
, et al
Diabetes Prevention Program Research Group
.
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
.
N Engl J Med
2002
;
346
:
393
403
92.
Tuomilehto
J
,
Lindström
J
,
Eriksson
JG
, et al
Finnish Diabetes Prevention Study Group
.
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance
.
N Engl J Med
2001
;
344
:
1343
1350
93.
Pan
X-R
,
Li
G-W
,
Hu
Y-H
, et al
.
Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and Diabetes Study
.
Diabetes Care
1997
;
20
:
537
544
94.
Boulé
NG
,
Haddad
E
,
Kenny
GP
,
Wells
GA
,
Sigal
RJ
.
Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials
.
JAMA
2001
;
286
:
1218
1227
95.
Colberg
SR
,
Riddell
MC
.
Physical activity: regulation of glucose metabolism, clinicial management strategies, and weight control
. In Type 1 Diabetes Sourcebook.
Peters
AL
,
Laffel
LM
, Eds.
Alexandria, VA
,
American Diabetes Association
,
2013
96.
Boulé
NG
,
Kenny
GP
,
Haddad
E
,
Wells
GA
,
Sigal
RJ
.
Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus
.
Diabetologia
2003
;
46
:
1071
1081
97.
Rejeski
WJ
,
Ip
EH
,
Bertoni
AG
, et al
Look AHEAD Research Group
.
Lifestyle change and mobility in obese adults with type 2 diabetes
.
N Engl J Med
2012
;
366
:
1209
1217
98.
Colberg
SR
,
Sigal
RJ
,
Fernhall
B
, et al
.
Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement executive summary
.
Diabetes Care
2010
;
33
:
2692
2696
99.
Janssen
I
,
Leblanc
AG
.
Systematic review of the health benefits of physical activity and fitness in school-aged children and youth
.
Int J Behav Nutr Phys Act
2010
;
7
:
40
100.
Office of Disease Prevention and Health Promotion
U.S. Department of Health and Human Services
.
2008
Physical Activity Guidelines for Americans [Internet], 2008. Available from http://www.health.gov/paguidelines/guidelines/default.aspx. Accessed 1 October 2014
101.
Katzmarzyk
PT
,
Church
TS
,
Craig
CL
,
Bouchard
C
.
Sitting time and mortality from all causes, cardiovascular disease, and cancer
.
Med Sci Sports Exerc
2009
;
41
:
998
1005
102.
Sigal
RJ
,
Kenny
GP
,
Wasserman
DH
,
Castaneda-Sceppa
C
.
Physical activity/exercise and type 2 diabetes
.
Diabetes Care
2004
;
27
:
2518
2539
103.
Church
TS
,
Blair
SN
,
Cocreham
S
, et al
.
Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial
.
JAMA
2010
;
304
:
2253
2262
104.
Bax
JJ
,
Young
LH
,
Frye
RL
,
Bonow
RO
,
Steinberg
HO
,
Barrett
EJ
.
Screening for coronary artery disease in patients with diabetes
.
Diabetes Care
2007
;
30
:
2729
2736
105.
Chu
L
,
Hamilton
J
,
Riddell
MC
.
Clinical management of the physically active patient with type 1 diabetes
.
Phys Sportsmed
2011
;
39
:
64
77
106.
Colberg
SR
. Exercise and Diabetes: A Clinician’s Guide to Prescribing Physical Activity, 1st ed.
Alexandria, VA
,
American Diabetes Association
,
2013
107.
Lemaster
JW
,
Reiber
GE
,
Smith
DG
,
Heagerty
PJ
,
Wallace
C
.
Daily weight-bearing activity does not increase the risk of diabetic foot ulcers
.
Med Sci Sports Exerc
2003
;
35
:
1093
1099
108.
Spallone
V
,
Ziegler
D
,
Freeman
R
, et al
Toronto Consensus Panel on Diabetic Neuropathy
.
Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management
.
Diabetes Metab Res Rev
2011
;
27
:
639
653
109.
Pop-Busui
R
,
Evans
GW
,
Gerstein
HC
, et al
Action to Control Cardiovascular Risk in Diabetes Study Group
.
Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial
.
Diabetes Care
2010
;
33
:
1578
1584
110.
Jankowich
M
,
Choudhary
G
,
Taveira
TH
,
Wu
W-C
.
Age-, race-, and gender-specific prevalence of diabetes among smokers
.
Diabetes Res Clin Pract
2011
;
93
:
e101
e105
111.
Voulgari
C
,
Katsilambros
N
,
Tentolouris
N
.
Smoking cessation predicts amelioration of microalbuminuria in newly diagnosed type 2 diabetes mellitus: a 1-year prospective study
.
Metabolism
2011
;
60
:
1456
1464
112.
Ranney
L
,
Melvin
C
,
Lux
L
,
McClain
E
,
Lohr
KN
.
Systematic review: smoking cessation intervention strategies for adults and adults in special populations
.
Ann Intern Med
2006
;
145
:
845
856
113.
Clair
C
,
Rigotti
NA
,
Porneala
B
, et al
.
Association of smoking cessation and weight change with cardiovascular disease among adults with and without diabetes
.
JAMA
2013
;
309
:
1014
1021
114.
Palazzolo
DL
.
Electronic cigarettes and vaping: a new challenge in clinical medicine and public health
.
A literature review
. Front Public Health
2013
;
1
:
56
115.
Anderson
RJ
,
Grigsby
AB
,
Freedland
KE
, et al
.
Anxiety and poor glycemic control: a meta-analytic review of the literature
.
Int J Psychiatry Med
2002
;
32
:
235
247
116.
Delahanty
LM
,
Grant
RW
,
Wittenberg
E
, et al
.
Association of diabetes-related emotional distress with diabetes treatment in primary care patients with type 2 diabetes
.
Diabet Med
2007
;
24
:
48
54
117.
Anderson
RJ
,
Freedland
KE
,
Clouse
RE
,
Lustman
PJ
.
The prevalence of comorbid depression in adults with diabetes: a meta-analysis
.
Diabetes Care
2001
;
24
:
1069
1078
118.
Kovacs Burns
K
,
Nicolucci
A
,
Holt
RIG
, et al
DAWN2 Study Group
.
Diabetes Attitudes, Wishes and Needs second study (DAWN2™): cross-national benchmarking indicators for family members living with people with diabetes
.
Diabet Med
2013
;
30
:
778
788
119.
Harkness
E
,
Macdonald
W
,
Valderas
J
,
Coventry
P
,
Gask
L
,
Bower
P
.
Identifying psychosocial interventions that improve both physical and mental health in patients with diabetes: a systematic review and meta-analysis
.
Diabetes Care
2010
;
33
:
926
930
120.
Bot
M
,
Pouwer
F
,
Zuidersma
M
,
van Melle
JP
,
de Jonge
P
.
Association of coexisting diabetes and depression with mortality after myocardial infarction
.
Diabetes Care
2012
;
35
:
503
509
121.
Scherrer
JF
,
Garfield
LD
,
Chrusciel
T
, et al
.
Increased risk of myocardial infarction in depressed patients with type 2 diabetes
.
Diabetes Care
2011
;
34
:
1729
1734
122.
Sullivan
MD
,
O’Connor
P
,
Feeney
P
, et al
.
Depression predicts all-cause mortality: epidemiological evaluation from the ACCORD HRQL substudy
.
Diabetes Care
2012
;
35
:
1708
1715
123.
Chen
P-C
,
Chan
Y-T
,
Chen
H-F
,
Ko
M-C
,
Li
C-Y
.
Population-based cohort analyses of the bidirectional relationship between type 2 diabetes and depression
.
Diabetes Care
2013
;
36
:
376
382
124.
Pan
A
,
Keum
N
,
Okereke
OI
, et al
.
Bidirectional association between depression and metabolic syndrome: a systematic review and meta-analysis of epidemiological studies
.
Diabetes Care
2012
;
35
:
1171
1180
125.
Nicolucci
A
,
Kovacs Burns
K
,
Holt
RIG
, et al
DAWN2 Study Group
.
Diabetes Attitudes, Wishes and Needs second study (DAWN2™): cross-national benchmarking of diabetes-related psychosocial outcomes for people with diabetes
.
Diabet Med
2013
;
30
:
767
777
126.
Fisher
L
,
Hessler
DM
,
Polonsky
WH
,
Mullan
J
.
When is diabetes distress clinically meaningful? Establishing cut points for the Diabetes Distress Scale
.
Diabetes Care
2012
;
35
:
259
264
127.
Fisher
L
,
Glasgow
RE
,
Strycker
LA
.
The relationship between diabetes distress and clinical depression with glycemic control among patients with type 2 diabetes
.
Diabetes Care
2010
;
33
:
1034
1036
128.
Aikens
JE
.
Prospective associations between emotional distress and poor outcomes in type 2 diabetes
.
Diabetes Care
2012
;
35
:
2472
2478
129.
Gary
TL
,
Safford
MM
,
Gerzoff
RB
, et al
.
Perception of neighborhood problems, health behaviors, and diabetes outcomes among adults with diabetes in managed care: the Translating Research Into Action for Diabetes (TRIAD) study
.
Diabetes Care
2008
;
31
:
273
278
130.
Zhang
X
,
Norris
SL
,
Gregg
EW
,
Cheng
YJ
,
Beckles
G
,
Kahn
HS
.
Depressive symptoms and mortality among persons with and without diabetes
.
Am J Epidemiol
2005
;
161
:
652
660
131.
Fisher
L
,
Glasgow
RE
,
Mullan
JT
,
Skaff
MM
,
Polonsky
WH
.
Development of a brief diabetes distress screening instrument
.
Ann Fam Med
2008
;
6
:
246
252
132.
McGuire
BE
,
Morrison
TG
,
Hermanns
N
, et al
.
Short-form measures of diabetes-related emotional distress: the Problem Areas in Diabetes Scale (PAID)-5 and PAID-1
.
Diabetologia
2010
;
53
:
66
69
133.
Rubin
RR
,
Peyrot
M
.
Psychological issues and treatments for people with diabetes
.
J Clin Psychol
2001
;
57
:
457
478
134.
Young-Hyman
DL
,
Davis
CL
.
Disordered eating behavior in individuals with diabetes: importance of context, evaluation, and classification
.
Diabetes Care
2010
;
33
:
683
689
135.
Beverly
EA
,
Hultgren
BA
,
Brooks
KM
,
Ritholz
MD
,
Abrahamson
MJ
,
Weinger
K
.
Understanding physicians’ challenges when treating type 2 diabetic patients’ social and emotional difficulties: a qualitative study
.
Diabetes Care
2011
;
34
:
1086
1088
136.
Ciechanowski
P
.
Diapression: an integrated model for understanding the experience of individuals with co-occurring diabetes and depression
.
Clinical Diabetes
2011
;
29
:
43
49
137.
Katon
WJ
,
Lin
EHB
,
Von Korff
M
, et al
.
Collaborative care for patients with depression and chronic illnesses
.
N Engl J Med
2010
;
363
:
2611
2620
138.
Akinsanya-Beysolow
I
Advisory Committee on Immunization Practices (ACIP)
ACIP Child/Adolescent Immunization Work Group
Centers for Disease Control and Prevention (CDC)
.
Advisory Committee on Immunization Practices recommended immunization schedules for persons aged 0 through 18 years - United States, 2014
.
MMWR Morb Mortal Wkly Rep
2014
;
63
:
108
109
139.
Bridges
CB
,
Coyne-Beasley
T
Advisory Committee on Immunization Practices (ACIP)
ACIP Adult Immunization Work Group
Centers for Disease Control and Prevention (CDC)
.
Advisory Committee on Immunization Practices recommended immunization schedule for adults aged 19 years or older - United States, 2014
.
MMWR Morb Mortal Wkly Rep
2014
;
63
:
110
112
140.
Smith
SA
,
Poland
GA
.
Use of influenza and pneumococcal vaccines in people with diabetes
.
Diabetes Care
2000
;
23
:
95
108
141.
Colquhoun
AJ
,
Nicholson
KG
,
Botha
JL
,
Raymond
NT
.
Effectiveness of influenza vaccine in reducing hospital admissions in people with diabetes
.
Epidemiol Infect
1997
;
119
:
335
341
142.
Tomczyk
S
,
Bennett
NM
,
Stoecker
C
, et al
.
Use of 13-valent pneumococcal conjugate vaccine and 23-valent pneumococcal polysaccharide vaccine among adults aged ≥65 years: recommendations of the Advisory Committee on Immunization Practices (ACIP)
.
MMWR Morb Mortal Wkly Rep
2014
;
63
:
822
825