CONTENTS
CLASSIFICATION AND DIAGNOSIS OF DIABETES, p. S12
Classification of diabetes
Diagnosis of diabetes
Categories of increased risk for diabetes (prediabetes)
TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS, p. S13
Testing for type 2 diabetes and risk of future diabetes in adults
Testing for type 2 diabetes in children
Screening for type 1 diabetes
DETECTION AND DIAGNOSIS OF GESTATIONAL DIABETES MELLITUS, p. S15
PREVENTION/DELAY OF TYPE 2 DIABETES, p. S16
DIABETES CARE, p. S16
Initial evaluation
Management
Glycemic control
Assessment of glycemic control
Glucose monitoring
A1C
Glycemic goals in adults
Pharmacologic and overall approaches to treatment
Therapy for type 1 diabetes
Therapy for type 2 diabetes
Diabetes self-management education
Medical nutrition therapy
Physical activity
Psychosocial assessment and care
When treatment goals are not met
Hypoglycemia
Intercurrent illness
Bariatric surgery
Immunization
PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS, p. S27
Cardiovascular disease
Hypertension/blood pressure control
Dyslipidemia/lipid management
Antiplatelet agents
Smoking cessation
Coronary heart disease screening and treatment
Nephropathy screening and treatment
Retinopathy screening and treatment
Neuropathy screening and treatment
Foot care
DIABETES CARE IN SPECIFIC POPULATIONS, p. S38
Children and adolescents
Type 1 diabetes Glycemic control
Screening and management of chronic complications in children and adolescents with type 1 diabetes
Nephropathy
Hypertension
Dyslipidemia
Retinopathy
Celiac disease
Hypothyroidism
Self-management
School and day care
Transition from pediatric to adult care
Type 2 diabetes
Monogenic diabetes syndromes
Preconception care
Older adults
Cystic fibrosis–related diabetes
DIABETES CARE IN SPECIFIC SETTINGS, p. S43
Diabetes care in the hospital
Glycemic targets in hospitalized patients
Anti-hyperglycemic agents in hospitalized patients
Preventing hypoglycemia
Diabetes care providers in the hospital
Self-management in the hospital
Diabetes self-management education in the hospital
Medical nutrition therapy in the hospital
Bedside blood glucose monitoring
Discharge planning
STRATEGIES FOR IMPROVING DIABETES CARE, p. S46
Diabetes is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes.
These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1,–3.
The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.
Level of evidence . | Description . |
---|---|
A | Clear evidence from well-conducted, generalizable, randomized controlled trials that are adequately powered, including:
|
Compelling nonexperimental evidence, i.e., “all or none” rule developed by Center for Evidence Based Medicine at Oxford | |
Supportive evidence from well-conducted randomized controlled trials that are adequately powered, including:
| |
B | Supportive evidence from well-conducted cohort studies
|
Supportive evidence from a well-conducted case-control study | |
C | Supportive evidence from poorly controlled or uncontrolled studies
|
Conflicting evidence with the weight of evidence supporting the recommendation | |
E | Expert consensus or clinical experience |
Level of evidence . | Description . |
---|---|
A | Clear evidence from well-conducted, generalizable, randomized controlled trials that are adequately powered, including:
|
Compelling nonexperimental evidence, i.e., “all or none” rule developed by Center for Evidence Based Medicine at Oxford | |
Supportive evidence from well-conducted randomized controlled trials that are adequately powered, including:
| |
B | Supportive evidence from well-conducted cohort studies
|
Supportive evidence from a well-conducted case-control study | |
C | Supportive evidence from poorly controlled or uncontrolled studies
|
Conflicting evidence with the weight of evidence supporting the recommendation | |
E | Expert consensus or clinical experience |
These standards of care are revised annually by the ADA's multidisciplinary Professional Practice Committee, incorporating new evidence. Members of the Professional Practice Committee and their disclosed conflicts of interest are listed on page S97. Subsequently, as with all Position Statements, the standards of care are reviewed and approved by the Executive Committee of ADA's Board of Directors.
I. CLASSIFICATION AND DIAGNOSIS OF DIABETES
A. Classification of diabetes
The classification of diabetes includes four clinical classes:
Type 1 diabetes (results from β-cell destruction, usually leading to absolute insulin deficiency)
Type 2 diabetes (results from a progressive insulin secretory defect on the background of insulin resistance)
Other specific types of diabetes due to other causes, e.g., genetic defects in β-cell function, genetic defects in insulin action, diseases of the exocrine pancreas (such as cystic fibrosis), and drug- or chemical-induced (such as in the treatment of HIV/AIDS or after organ transplantation)
Gestational diabetes mellitus (GDM) (diabetes diagnosed during pregnancy that is not clearly overt diabetes)
Some patients cannot be clearly classified as having type 1 or type 2 diabetes. Clinical presentation and disease progression vary considerably in both types of diabetes. Occasionally, patients who otherwise have type 2 diabetes may present with ketoacidosis. Similarly, patients with type 1 diabetes may have a late onset and slow (but relentless) progression of disease despite having features of autoimmune disease. Such difficulties in diagnosis may occur in children, adolescents, and adults. The true diagnosis may become more obvious over time.
B. Diagnosis of diabetes
For decades, the diagnosis of diabetes was based on plasma glucose criteria, either the fasting plasma glucose (FPG) or the 2-h value in the 75-g oral glucose tolerance test (OGTT) (4).
In 2009, an International Expert Committee that included representatives of the ADA, the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended the use of the A1C test to diagnose diabetes, with a threshold of ≥6.5% (5), and ADA adopted this criterion in 2010 (4). The diagnostic test should be performed using a method that is certified by the National Glycohemoglobin Standardization Program (NGSP) and standardized or traceable to the Diabetes Control and Complications Trial (DCCT) reference assay. Point-of-care A1C assays are not sufficiently accurate at this time to use for diagnostic purposes.
Epidemiologic datasets show a similar relationship between A1C and risk of retinopathy as has been shown for the corresponding FPG and 2-h plasma glucose thresholds. The A1C has several advantages to the FPG and OGTT, including greater convenience, since fasting is not required; evidence to suggest greater preanalytical stability; and less day-to-day perturbations during periods of stress and illness. These advantages must be balanced by greater cost, the limited availability of A1C testing in certain regions of the developing world, and the incomplete correlation between A1C and average glucose in certain individuals. In addition, A1C levels can vary with patients' ethnicity (6) as well as with certain anemias and hemoglobinopathies. For patients with an abnormal hemoglobin but normal red cell turnover, such as sickle cell trait, an A1C assay without interference from abnormal hemoglobins should be used (an updated list is available at www.ngsp.org/interf.asp). For conditions with abnormal red cell turnover, such as pregnancy, recent blood loss or transfusion, or some anemias, the diagnosis of diabetes must employ glucose criteria exclusively.
The established glucose criteria for the diagnosis of diabetes (FPG and 2-h PG) remain valid as well (Table 2). Just as there is less than 100% concordance between the FPG and 2-h PG tests, there is not perfect concordance between A1C and either glucose-based test. Analyses of National Health and Nutrition Examination Survey (NHANES) data indicate that, assuming universal screening of the undiagnosed, the A1C cut point of ≥6.5% identifies one-third fewer cases of undiagnosed diabetes than a fasting glucose cut point of ≥126 mg/dl (7.0 mmol/l) (7). However, in practice, a large portion of the diabetic population remains unaware of their condition. Thus, the lower sensitivity of A1C at the designated cut point may well be offset by the test's greater practicality, and wider application of a more convenient test (A1C) may actually increase the number of diagnoses made.
A1C ≥6.5%. The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.* |
or |
FPG ≥126 mg/dl (7.0 mmol/l). Fasting is defined as no caloric intake for at least 8 h.* |
or |
2-h plasma glucose ≥200 mg/dl (11.1 mmol/l) during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.* |
or |
In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dl (11.1 mmol/l) |
A1C ≥6.5%. The test should be performed in a laboratory using a method that is NGSP certified and standardized to the DCCT assay.* |
or |
FPG ≥126 mg/dl (7.0 mmol/l). Fasting is defined as no caloric intake for at least 8 h.* |
or |
2-h plasma glucose ≥200 mg/dl (11.1 mmol/l) during an OGTT. The test should be performed as described by the World Health Organization, using a glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water.* |
or |
In a patient with classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose ≥200 mg/dl (11.1 mmol/l) |
*In the absence of unequivocal hyperglycemia, result should be confirmed by repeat testing.
As with most diagnostic tests, a test result diagnostic of diabetes should be repeated to rule out laboratory error, unless the diagnosis is clear on clinical grounds, such as a patient with a hyperglycemic crisis or classic symptoms of hyperglycemia and a random plasma glucose ≥200 mg/dl. It is preferable that the same test be repeated for confirmation, since there will be a greater likelihood of concurrence in this case. For example, if the A1C is 7.0% and a repeat result is 6.8%, the diagnosis of diabetes is confirmed. However, if two different tests (such as A1C and FPG) are both above the diagnostic thresholds, the diagnosis of diabetes is also confirmed.
On the other hand, if two different tests are available in an individual and the results are discordant, the test whose result is above the diagnostic cut point should be repeated, and the diagnosis is made on the basis of the confirmed test. That is, if a patient meets the diabetes criterion of the A1C (two results ≥6.5%) but not the FPG (<126 mg/dl or 7.0 mmol/l), or vice versa, that person should be considered to have diabetes.
Since there is preanalytic and analytic variability of all the tests, it is also possible that when a test whose result was above the diagnostic threshold is repeated, the second value will be below the diagnostic cut point. This is least likely for A1C, somewhat more likely for FPG, and most likely for the 2-h PG. Barring a laboratory error, such patients are likely to have test results near the margins of the threshold for a diagnosis. The healthcare professional might opt to follow the patient closely and repeat the testing in 3–6 months.
The current diagnostic criteria for diabetes are summarized in Table 2.
C. Categories of increased risk for diabetes (prediabetes)
In 1997 and 2003, The Expert Committee on Diagnosis and Classification of Diabetes Mellitus (8,9) recognized an intermediate group of individuals whose glucose levels, although not meeting criteria for diabetes, are nevertheless too high to be considered normal. These persons were defined as having impaired fasting glucose (IFG) (FPG levels 100–125 mg/dl [5.6–6.9 mmol/l]) or impaired glucose tolerance (IGT) (2-h PG values in the OGTT of 140–199 mg/dl [7.8–11.0 mmol/l]). It should be noted that the World Health Organization (WHO) and a number of other diabetes organizations define the cutoff for IFG at 110 mg/dl (6.1 mmol/l).
Individuals with IFG and/or IGT have been referred to as having prediabetes, indicating the relatively high risk for the future development of diabetes. IFG and IGT should not be viewed as clinical entities in their own right but rather risk factors for diabetes as well as cardiovascular disease (CVD). IFG and IGT are associated with obesity (especially abdominal or visceral obesity), dyslipidemia with high triglycerides and/or low HDL cholesterol, and hypertension.
As is the case with the glucose measures, several prospective studies that used A1C to predict the progression to diabetes demonstrated a strong, continuous association between A1C and subsequent diabetes. In a systematic review of 44,203 individuals from 16 cohort studies with a follow-up interval averaging 5.6 years (range 2.8–12 years), those with an A1C between 5.5 and 6.0% had a substantially increased risk of diabetes with 5-year incidences ranging from 9–25%. An A1C range of 6.0–6.5% had a 5-year risk of developing diabetes between 25–50% and relative risk 20 times higher compared with an A1C of 5.0% (10). In a community-based study of black and white adults without diabetes, baseline A1C was a stronger predictor of subsequent diabetes and cardiovascular events than fasting glucose (11). Other analyses suggest that an A1C of 5.7% is associated with diabetes risk similar to that of the high-risk participants in the Diabetes Prevention Program (DPP).
Hence, it is reasonable to consider an A1C range of 5.7–6.4% as identifying individuals with high risk for future diabetes, a state that may be referred to as prediabetes (4). As is the case for individuals found to have IFG and IGT, individuals with an A1C of 5.7–6.4% should be informed of their increased risk for diabetes as well as CVD and counseled about effective strategies to lower their risks (see iv. prevention/delay of type 2 diabetes). As with glucose measurements, the continuum of risk is curvilinear—as A1C rises, the risk of diabetes rises disproportionately (10). Accordingly, interventions should be most intensive and follow-up particularly vigilant for those with A1Cs above 6.0%, who should be considered to be at very high risk.
Table 3 summarizes the categories of increased risk for diabetes.
FPG 100–125 mg/dl (5.6–6.9 mmol/l): IFG |
or |
2-h plasma glucose in the 75-g OGTT 140–199 mg/dl (7.8–11.0 mmol/l): IGT |
or |
A1C 5.7–6.4% |
FPG 100–125 mg/dl (5.6–6.9 mmol/l): IFG |
or |
2-h plasma glucose in the 75-g OGTT 140–199 mg/dl (7.8–11.0 mmol/l): IGT |
or |
A1C 5.7–6.4% |
*For all three tests, risk is continuous, extending below the lower limit of the range and becoming disproportionately greater at higher ends of the range.
II. TESTING FOR DIABETES IN ASYMPTOMATIC PATIENTS
Recommendations
Testing to detect type 2 diabetes and assess risk for future diabetes in asymptomatic people should be considered in adults of any age who are overweight or obese (BMI ≥25 kg/m2) and who have one or more additional risk factors for diabetes (Table 4). In those without these risk factors, testing should begin at age 45 years. (B)
If tests are normal, repeat testing carried out at least at 3-year intervals is reasonable. (E)
To test for diabetes or to assess risk of future diabetes, A1C, FPG, or 2-h 75-g OGTT is appropriate. (B)
In those identified with increased risk for future diabetes, identify and, if appropriate, treat other CVD risk factors. (B)
For many illnesses, there is a major distinction between screening and diagnostic testing. However, for diabetes, the same tests would be used for “screening” as for diagnosis. Diabetes may be identified anywhere along a spectrum of clinical scenarios ranging from a seemingly low-risk individual who happens to have glucose testing, to a higher-risk individual whom the provider tests because of high suspicion of diabetes, to the symptomatic patient. The discussion herein is primarily framed as testing for diabetes in those without symptoms. Testing for diabetes will also detect individuals at increased future risk for diabetes, herein referred to as having prediabetes.
|
|
*At-risk BMI may be lower in some ethnic groups.
A. Testing for type 2 diabetes and risk of future diabetes in adults
Type 2 diabetes is frequently not diagnosed until complications appear, and approximately one-fourth of all people with diabetes in the U.S. may be undiagnosed. The effectiveness of early identification of prediabetes and diabetes through mass testing of asymptomatic individuals has not been proven definitively, and rigorous trials to provide such proof are unlikely to occur. However, mathematical modeling studies suggest that screening independent of risk factors beginning at age 30 or 45 years is highly cost-effective (<$11,000 per quality-adjusted life-year gained) (12). Prediabetes and diabetes meet established criteria for conditions in which early detection is appropriate. Both conditions are common and increasing in prevalence and impose significant public health burdens. There is a long presymptomatic phase before the diagnosis of type 2 diabetes is usually made. Relatively simple tests are available to detect preclinical disease. Additionally, the duration of glycemic burden is a strong predictor of adverse outcomes, and effective interventions exist to prevent progression of prediabetes to diabetes (see iv. prevention/delay of type 2 diabetes) and to reduce risk of complications of diabetes (see vi. prevention and management of diabetes complications).
Recommendations for testing for diabetes in asymptomatic, undiagnosed adults are listed in Table 4. Testing should be considered in adults of any age with BMI ≥25 kg/m2 and one or more of the known risk factors for diabetes. Because age is a major risk factor for diabetes, testing of those without other risk factors should begin no later than age 45 years.
Either A1C, FPG, or the 2-h OGTT is appropriate for testing. The 2-h OGTT identifies people with either IFG or IGT and thus more people at increased risk for the development of diabetes and CVD. It should be noted that the two tests do not necessarily detect the same individuals. The efficacy of interventions for primary prevention of type 2 diabetes (13,,,,,–19) have primarily been demonstrated among individuals with IGT, not for individuals with IFG (who do not also have IGT) or for individuals with specific A1C levels.
The appropriate interval between tests is not known (20). The rationale for the 3-year interval is that false negatives will be repeated before substantial time elapses, and there is little likelihood that an individual will develop significant complications of diabetes within 3 years of a negative test result. In the modeling study, repeat screening every 3 or 5 years was cost-effective (12).
Because of the need for follow-up and discussion of abnormal results, testing should be carried out within the health care setting. Community screening outside a health care setting is not recommended because people with positive tests may not seek, or have access to, appropriate follow-up testing and care. Conversely, there may be failure to ensure appropriate repeat testing for individuals who test negative. Community screening may also be poorly targeted, i.e., it may fail to reach the groups most at risk and inappropriately test those at low risk (the worried well) or even those already diagnosed.
B. Testing for type 2 diabetes in children
The incidence of type 2 diabetes in adolescents has increased dramatically in the last decade, especially in minority populations (21), although the disease remains rare in the general pediatric population (22). Consistent with recommendations for adults, children and youth at increased risk for the presence or the development of type 2 diabetes should be tested within the health care setting. The recommendations of the ADA Consensus Statement on Type 2 Diabetes in Children and Youth (23), with some modifications, are summarized in Table 5.
Criteria
|
Plus any two of the following risk factors:
|
Age of initiation: age 10 years or at onset of puberty, if puberty occurs at a younger age |
Frequency: every 3 years |
Criteria
|
Plus any two of the following risk factors:
|
Age of initiation: age 10 years or at onset of puberty, if puberty occurs at a younger age |
Frequency: every 3 years |
C. Screening for type 1 diabetes
Generally, people with type 1 diabetes present with acute symptoms of diabetes and markedly elevated blood glucose levels, and most cases are diagnosed soon after the onset of hyperglycemia. However, evidence from type 1 prevention studies suggests that measurement of islet autoantibodies identifies individuals who are at risk for developing type 1 diabetes. Such testing may be appropriate in high-risk individuals, such as those with prior transient hyperglycemia or those who have relatives with type 1 diabetes, in the context of clinical research studies (see, for example, http://www2.diabetestrialnet.org). Widespread clinical testing of asymptomatic low-risk individuals cannot currently be recommended, as it would identify very few individuals in the general population who are at risk. Individuals who screen positive should be counseled about their risk of developing diabetes. Clinical studies are being conducted to test various methods of preventing type 1 diabetes, or reversing early type 1 diabetes, in those with evidence of autoimmunity.
III. DETECTION AND DIAGNOSIS OF GESTATIONAL DIABETES MELLITUS
Recommendations
Screen for undiagnosed type 2 diabetes at the first prenatal visit in those with risk factors, using standard diagnostic criteria. (B)
In pregnant women not known to have diabetes, screen for GDM at 24–28 weeks of gestation, using a 75-g 2-h OGTT and the diagnostic cut points in Table 6. (B)
Screen women with GDM for persistent diabetes 6–12 weeks postpartum. (E)
Women with a history of GDM should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. (E)
For many years, GDM was defined as any degree of glucose intolerance with onset or first recognition during pregnancy (8), whether or not the condition persisted after pregnancy, and not excluding the possibility that unrecognized glucose intolerance may have antedated or begun concomitantly with the pregnancy. This definition facilitated a uniform strategy for detection and classification of GDM, but its limitations were recognized for many years. As the ongoing epidemic of obesity and diabetes has led to more type 2 diabetes in women of childbearing age, the number of pregnant women with undiagnosed type 2 diabetes has increased (24). Because of this, it is reasonable to screen women with risk factors for type 2 diabetes (Table 4) for diabetes at their initial prenatal visit, using standard diagnostic criteria (Table 2). Women with diabetes found at this visit should receive a diagnosis of overt, not gestational, diabetes.
Perform a 75-g OGTT, with plasma glucose measurement fasting and at 1 and 2 h, at 24–28 weeks of gestation in women not previously diagnosed with overt diabetes. |
The OGTT should be performed in the morning after an overnight fast of at least 8 h. |
The diagnosis of GDM is made when any of the following plasma glucose values are exceeded:
|
Perform a 75-g OGTT, with plasma glucose measurement fasting and at 1 and 2 h, at 24–28 weeks of gestation in women not previously diagnosed with overt diabetes. |
The OGTT should be performed in the morning after an overnight fast of at least 8 h. |
The diagnosis of GDM is made when any of the following plasma glucose values are exceeded:
|
GDM carries risks for the mother and neonate. The Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study (25), a large-scale (∼25,000 pregnant women) multinational epidemiologic study, demonstrated that risk of adverse maternal, fetal, and neonatal outcomes continuously increased as a function of maternal glycemia at 24–28 weeks, even within ranges previously considered normal for pregnancy. For most complications, there was no threshold for risk. These results have led to careful reconsideration of the diagnostic criteria for GDM. After deliberations in 2008–2009, the International Association of Diabetes and Pregnancy Study Groups (IADPSG), an international consensus group with representatives from multiple obstetrical and diabetes organizations, including ADA, developed revised recommendations for diagnosing GDM. The group recommended that all women not known to have diabetes undergo a 75-g OGTT at 24–28 weeks of gestation. Additionally, the group developed diagnostic cut points for the fasting, 1-h, and 2-h plasma glucose measurements that conveyed an odds ratio for adverse outcomes of at least 1.75 compared with the mean glucose levels in the HAPO study. Current screening and diagnostic strategies, based on the IADPSG statement (26), are outlined in Table 6.
These new criteria will significantly increase the prevalence of GDM, primarily because only one abnormal value, not two, is sufficient to make the diagnosis. The ADA recognizes the anticipated significant increase in the incidence of GDM to be diagnosed by these criteria and is sensitive to concerns about the “medicalization” of pregnancies previously categorized as normal. These diagnostic criteria changes are being made in the context of worrisome worldwide increases in obesity and diabetes rates, with the intent of optimizing gestational outcomes for women and their babies.
Admittedly, there are few data from randomized clinical trials regarding therapeutic interventions in women who will now be diagnosed with GDM based on only one blood glucose value above the specified cut points (in contrast to the older criteria that stipulated at least two abnormal values.) Expected benefits to their pregnancies and offspring is inferred from intervention trials that focused on women with more mild hyperglycemia than identified using older GDM diagnostic criteria and that found modest benefits (27,28). The frequency of their follow-up and blood glucose monitoring is not yet clear, but likely to be less intensive than women diagnosed by the older criteria. Additional well-designed clinical studies are needed to determine the optimal intensity of monitoring and treatment of women with GDM diagnosed by the new criteria (that would not have met the prior definition of GDM). It is important to note that 80–90% of women in both of the mild GDM studies (whose glucose values overlapped with the thresholds recommended herein) could be managed with lifestyle therapy alone.
Because some cases of GDM may represent preexisting undiagnosed type 2 diabetes, women with a history of GDM should be screened for diabetes 6–12 weeks postpartum, using nonpregnant OGTT criteria. Women with a history of GDM have a greatly increased subsequent risk for diabetes (29) and should be followed up with subsequent screening for the development of diabetes or prediabetes, as outlined in ii. testing for diabetes in asymptomatic patients.
IV. PREVENTION/DELAY OF TYPE 2 DIABETES
Recommendations
Patients with IGT (A), IFG (E), or an A1C of 5.7–6.4% (E) should be referred to an effective ongoing support program targeting weight loss of 7% of body weight and increasing physical activity to at least 150 min/week of moderate activity such as walking.
Follow-up counseling appears to be important for success. (B)
Based on potential cost savings of diabetes prevention, such programs should be covered by third-party payors. (E)
Metformin therapy for prevention of type 2 diabetes may be considered in those at the highest risk for developing diabetes, such as those with multiple risk factors, especially if they demonstrate progression of hyperglycemia (e.g., A1C ≥6%) despite lifestyle interventions. (B)
Monitoring for the development of diabetes in those with prediabetes should be performed every year. (E)
Randomized controlled trials have shown that individuals at high risk for developing diabetes (those with IFG, IGT, or both) can be given interventions that significantly decrease the rate of onset of diabetes (13,,,,,–19). These interventions include intensive lifestyle modification programs that have been shown to be very effective (58% reduction after 3 years) and use of the pharmacologic agents metformin, α-glucosidase inhibitors, orlistat, and thiazolidinediones (TZDs), each of which has been shown to decrease incident diabetes to various degrees. A summary of major diabetes prevention trials is shown in Table 7.
Study (ref.) . | n . | Population . | Mean age (years) . | Duration (years) . | Intervention (daily dose) . | Incidence in control subjects (%/year) . | Relative risk reduction (%) (95% CI) . | 3-Year number needed to treatδ . |
---|---|---|---|---|---|---|---|---|
Lifestyle | ||||||||
Finnish DPS (14) | 522 | IGT, BMI ≥25 kg/m2 | 55 | 3.2 | I-D&E | 6 | 58 (30–70) | 8.5 |
DPP (13) | 2,161* | IGT, BMI ≥24 kg/m2, FPG >5.3 mmol/l | 51 | 3 | I-D&E | 10.4 | 58 (48–66) | 6.9 |
Da Qing (15) | 259* | IGT (randomized groups) | 45 | 6 | G-D&E | 14.5 | 38 (14–56) | 7.9 |
Toranomon Study (35) | 458 | IGT (men), BMI = 24 kg/m2 | ∼55 | 4 | I-D&E | 2.4 | 67 (P < 0.043)† | 20.6 |
Indian DPP (19) | 269* | IGT | 46 | 2.5 | I-D&E | 23 | 29 (21–37) | 6.4 |
Medications | ||||||||
DPP (13) | 2,155* | IGT, BMI >24 kg/m2, FPG >5.3 mmol/l | 51 | 2.8 | Metformin (1,700 mg) | 10.4 | 31 (17–43) | 13.9 |
Indian DPP (19) | 269* | IGT | 46 | 2.5 | Metformin (500 mg) | 23 | 26 (19–35) | 6.9 |
STOP-NIDDM (17) | 1,419 | IGT, FPG >5.6 mmol/l | 54 | 3.2 | Acarbose (300 mg) | 12.4 | 25 (10–37) | 9.6 |
XENDOS (36) | 3,277 | BMI >30 kg/m2 | 43 | 4 | Orlistat (360 mg) | 2.4 | 37 (14–54) | 45.5 |
DREAM (18) | 5,269 | IGT or IFG | 55 | 3.0 | Rosiglitazone (8 mg) | 9.1 | 60 (54–65) | 6.9 |
Voglibose Ph-3 (37) | 1,780 | IGT | 56 | 3.0 (1-year Rx) | Vogliobose (0.2 mg) | 12.0 | 40 (18–57) | 21 (1-year Rx) |
Study (ref.) . | n . | Population . | Mean age (years) . | Duration (years) . | Intervention (daily dose) . | Incidence in control subjects (%/year) . | Relative risk reduction (%) (95% CI) . | 3-Year number needed to treatδ . |
---|---|---|---|---|---|---|---|---|
Lifestyle | ||||||||
Finnish DPS (14) | 522 | IGT, BMI ≥25 kg/m2 | 55 | 3.2 | I-D&E | 6 | 58 (30–70) | 8.5 |
DPP (13) | 2,161* | IGT, BMI ≥24 kg/m2, FPG >5.3 mmol/l | 51 | 3 | I-D&E | 10.4 | 58 (48–66) | 6.9 |
Da Qing (15) | 259* | IGT (randomized groups) | 45 | 6 | G-D&E | 14.5 | 38 (14–56) | 7.9 |
Toranomon Study (35) | 458 | IGT (men), BMI = 24 kg/m2 | ∼55 | 4 | I-D&E | 2.4 | 67 (P < 0.043)† | 20.6 |
Indian DPP (19) | 269* | IGT | 46 | 2.5 | I-D&E | 23 | 29 (21–37) | 6.4 |
Medications | ||||||||
DPP (13) | 2,155* | IGT, BMI >24 kg/m2, FPG >5.3 mmol/l | 51 | 2.8 | Metformin (1,700 mg) | 10.4 | 31 (17–43) | 13.9 |
Indian DPP (19) | 269* | IGT | 46 | 2.5 | Metformin (500 mg) | 23 | 26 (19–35) | 6.9 |
STOP-NIDDM (17) | 1,419 | IGT, FPG >5.6 mmol/l | 54 | 3.2 | Acarbose (300 mg) | 12.4 | 25 (10–37) | 9.6 |
XENDOS (36) | 3,277 | BMI >30 kg/m2 | 43 | 4 | Orlistat (360 mg) | 2.4 | 37 (14–54) | 45.5 |
DREAM (18) | 5,269 | IGT or IFG | 55 | 3.0 | Rosiglitazone (8 mg) | 9.1 | 60 (54–65) | 6.9 |
Voglibose Ph-3 (37) | 1,780 | IGT | 56 | 3.0 (1-year Rx) | Vogliobose (0.2 mg) | 12.0 | 40 (18–57) | 21 (1-year Rx) |
Modified and reprinted with permission (38).
Percentage points: δNumber needed to treat to prevent 1 case of diabetes, standardized for a 3-year period to improve comparisons across studies.
*Number of participants in the indicated comparisons, not necessarily in entire study.
†Calculated from information in the article. DPP, Diabetes Prevention Program; DPS, Diabetes Prevention Study; DREAM, Diabetes Reduction Assessment with Ramipril and Rosiglitazone Medication; STOP-NIDDM, Study to Prevent Non-Insulin Dependent Diabetes; XENDOS, Xenical in the prevention of Diabetes in Obese Subjects. I, individual; G, group; D&E, diet and exercise.
Follow-up of all three large studies of lifestyle intervention has shown sustained reduction in the rate of conversion to type 2 diabetes, with 43% reduction at 20 years in the Da Qing study (30), 43% reduction at 7 years in the Finnish Diabetes Prevention Study (DPS) (31) and 34% reduction at 10 years in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS) (32). A cost-effectiveness analysis suggested that lifestyle interventions as delivered in the DPP are cost-effective (33). Group delivery of the DPP intervention in community settings has the potential to be significantly less expensive while still achieving similar weight loss (34).
Based on the results of clinical trials and the known risks of progression of prediabetes to diabetes, persons with an A1C of 5.7–6.4%, IGT, or IFG should be counseled on lifestyle changes with goals similar to those of the DPP (7% weight loss and moderate physical activity of at least 150 min/week). Regarding the more difficult issue of drug therapy for diabetes prevention, a consensus panel felt that metformin should be the only drug considered (39). For other drugs, the issues of cost, side effects, and lack of persistence of effect in some studies led the panel to not recommend their use for diabetes prevention. Metformin, which was significantly less effective than lifestyle in the DPP and DPPOS, reasonably may be recommended for very-high-risk individuals (those with risk factors for diabetes and/or those with more severe or progressive hyperglycemia). Of note, in the DPP metformin was most effective compared to lifestyle in those with BMI of at least 35 kg/m2 and was not significantly better than placebo in those over age 60 years.
V. DIABETES CARE
A. Initial evaluation
A complete medical evaluation should be performed to classify the diabetes, detect the presence of diabetes complications, review previous treatment and glycemic control in patients with established diabetes, assist in formulating a management plan, and provide a basis for continuing care. Laboratory tests appropriate to the evaluation of each patient's medical condition should be performed. A focus on the components of comprehensive care (Table 8) will assist the health care team to ensure optimal management of the patient with diabetes.
Medical history
|
Physical examination
|
Laboratory evaluation
|
Referrals
|
Medical history
|
Physical examination
|
Laboratory evaluation
|
Referrals
|
*See appropriate referrals for these categories.
B. Management
People with diabetes should receive medical care from a physician-coordinated team. Such teams may include, but are not limited to, physicians, nurse practitioners, physician's assistants, nurses, dietitians, pharmacists, and mental health professionals with expertise and a special interest in diabetes. It is essential in this collaborative and integrated team approach that individuals with diabetes assume an active role in their care.
The management plan should be formulated as a collaborative therapeutic alliance among the patient and family, the physician, and other members of the health care team. A variety of strategies and techniques should be used to provide adequate education and development of problem-solving skills in the various aspects of diabetes management. Implementation of the management plan requires that each aspect is understood and agreed to by the patient and the care providers and that the goals and treatment plan are reasonable. Any plan should recognize diabetes self-management education (DSME) and ongoing diabetes support as an integral component of care. In developing the plan, consideration should be given to the patient's age, school or work schedule and conditions, physical activity, eating patterns, social situation and cultural factors, and presence of complications of diabetes or other medical conditions.
C. Glycemic control
1. Assessment of glycemic control
Two primary techniques are available for health providers and patients to assess the effectiveness of the management plan on glycemic control: patient self-monitoring of blood glucose (SMBG) or interstitial glucose, and A1C.
a. Glucose monitoring
Recommendations
SMBG should be carried out three or more times daily for patients using multiple insulin injections or insulin pump therapy. (A)
For patients using less-frequent insulin injections, noninsulin therapies, or medical nutrition therapy (MNT) alone, SMBG may be useful as a guide to the success of therapy. (E)
To achieve postprandial glucose targets, postprandial SMBG may be appropriate. (E)
When prescribing SMBG, ensure that patients receive initial instruction in, and routine follow-up evaluation of, SMBG technique and their ability to use data to adjust therapy. (E)
Continuous glucose monitoring (CGM) in conjunction with intensive insulin regimens can be a useful tool to lower A1C in selected adults (age ≥25 years) with type 1 diabetes. (A)
Although the evidence for A1C-lowering is less strong in children, teens, and younger adults, CGM may be helpful in these groups. Success correlates with adherence to ongoing use of the device. (C)
CGM may be a supplemental tool to SMBG in those with hypoglycemia unawareness and/or frequent hypoglycemic episodes. (E)
Major clinical trials of insulin-treated patients that demonstrated the benefits of intensive glycemic control on diabetes complications have included SMBG as part of multifactorial interventions, suggesting that SMBG is a component of effective therapy. SMBG allows patients to evaluate their individual response to therapy and assess whether glycemic targets are being achieved. Results of SMBG can be useful in preventing hypoglycemia and adjusting medications (particularly prandial insulin doses), MNT, and physical activity.
The frequency and timing of SMBG should be dictated by the particular needs and goals of the patient. SMBG is especially important for patients treated with insulin to monitor for and prevent asymptomatic hypoglycemia and hyperglycemia. For most patients with type 1 diabetes and pregnant women taking insulin, SMBG is recommended three or more times daily. For these populations, significantly more frequent testing may be required to reach A1C targets safely without hypoglycemia. The optimal frequency and timing of SMBG for patients with type 2 diabetes on noninsulin therapy is unclear. A meta-analysis of SMBG in non–insulin-treated patients with type 2 diabetes concluded that some regimen of SMBG was associated with a reduction in A1C of 0.4%. However, many of the studies in this analysis also included patient education with diet and exercise counseling and, in some cases, pharmacologic intervention, making it difficult to assess the contribution of SMBG alone to improved control (40). Several recent trials have called into question the clinical utility and cost-effectiveness of routine SMBG in non–insulin-treated patients (41,–43).
Because the accuracy of SMBG is instrument and user dependent (44), it is important to evaluate each patient's monitoring technique, both initially and at regular intervals thereafter. In addition, optimal use of SMBG requires proper interpretation of the data. Patients should be taught how to use the data to adjust food intake, exercise, or pharmacological therapy to achieve specific glycemic goals, and these skills should be reevaluated periodically.
CGM through the measurement of interstitial glucose (which correlates well with plasma glucose) is available. These sensors require calibration with SMBG, and the latter are still recommended for making acute treatment decisions. CGM devices also have alarms for hypo- and hyperglycemic excursions. Small studies in selected patients with type 1 diabetes have suggested that CGM use reduces the time spent in hypo- and hyperglycemic ranges and may modestly improve glycemic control. A larger 26-week randomized trial of 322 type 1 patients showed that adults age 25 years and older using intensive insulin therapy and CGM experienced a 0.5% reduction in A1C (from ∼7.6% to 7.1%) compared to usual intensive insulin therapy with SMBG (45). Sensor use in children, teens, and adults up to age 24 years did not result in significant A1C lowering, and there was no significant difference in hypoglycemia in any group. Importantly, the greatest predictor of A1C-lowering in this study for all age-groups was frequency of sensor use, which was lower in younger age-groups. In a smaller randomized controlled trial of 129 adults and children with baseline A1C <7.0%, outcomes combining A1C and hypoglycemia favored the group utilizing CGM, suggesting that CGM is also beneficial for individuals with type 1 diabetes who have already achieved excellent control with A1C <7.0 (46). Although CGM is an evolving technology, emerging data suggest that, in appropriately selected patients who are motivated to wear it most of the time, it may offer benefit. CGM may be particularly useful in those with hypoglycemia unawareness and/or frequent episodes of hypoglycemia, and studies in this area are ongoing.
b. A1C
Recommendations
Perform the A1C test at least two times a year in patients who are meeting treatment goals (and who have stable glycemic control). (E)
Perform the A1C test quarterly in patients whose therapy has changed or who are not meeting glycemic goals. (E)
Use of point-of-care testing for A1C allows for timely decisions on therapy changes, when needed. (E)
Because A1C is thought to reflect average glycemia over several months (44), and has strong predictive value for diabetes complications (47,48), A1C testing should be performed routinely in all patients with diabetes, at initial assessment and then as part of continuing care. Measurement approximately every 3 months determines whether a patient's glycemic targets have been reached and maintained. For any individual patient, the frequency of A1C testing should be dependent on the clinical situation, the treatment regimen used, and the judgment of the clinician. Some patients with stable glycemia well within target may do well with testing only twice per year, while unstable or highly intensively managed patients (e.g., pregnant type 1 women) may be tested more frequently than every 3 months. The availability of the A1C result at the time that the patient is seen (point-of-care testing) has been reported to result in increased intensification of therapy and improvement in glycemic control (49,50).
The A1C test is subject to certain limitations. Conditions that affect erythrocyte turnover (hemolysis, blood loss) and hemoglobin variants must be considered, particularly when the A1C result does not correlate with the patient's clinical situation (44). In addition, A1C does not provide a measure of glycemic variability or hypoglycemia. For patients prone to glycemic variability (especially type 1 patients, or type 2 patients with severe insulin deficiency), glycemic control is best judged by the combination of results of SMBG testing and the A1C. The A1C may also serve as a check on the accuracy of the patient's meter (or the patient's reported SMBG results) and the adequacy of the SMBG testing schedule.
Table 9 contains the correlation between A1C levels and mean plasma glucose levels based on data from the international A1C-Derived Average Glucose (ADAG) trial utilizing frequent SMBG and CGM in 507 adults (83% Caucasian) with type 1, type 2, and no diabetes (51). The American Diabetes Association and American Association of Clinical Chemists have determined that the correlation (r = 0.92) is strong enough to justify reporting both an A1C result and an estimated average glucose (eAG) result when a clinician orders the A1C test. The table in previous versions of the Standards of Medical Care in Diabetes describing the correlation between A1C and mean glucose was derived from relatively sparse data (one 7-point profile over 1 day per A1C reading) in the primarily Caucasian type 1 diabetic participants in the DCCT (52). Clinicians should note that the numbers in the table are now different, as they are based on ∼2,800 readings per A1C in the ADAG trial.
A1C (%) . | Mean plasma glucose . | |
---|---|---|
mg/dl . | mmol/l . | |
6 | 126 | 7.0 |
7 | 154 | 8.6 |
8 | 183 | 10.2 |
9 | 212 | 11.8 |
10 | 240 | 13.4 |
11 | 269 | 14.9 |
12 | 298 | 16.5 |
A1C (%) . | Mean plasma glucose . | |
---|---|---|
mg/dl . | mmol/l . | |
6 | 126 | 7.0 |
7 | 154 | 8.6 |
8 | 183 | 10.2 |
9 | 212 | 11.8 |
10 | 240 | 13.4 |
11 | 269 | 14.9 |
12 | 298 | 16.5 |
These estimates are based on ADAG data of ∼2,700 glucose measurements over 3 months per A1C measurement in 507 adults with type 1, type 2, and no diabetes. The correlation between A1C and average glucose was 0.92 (51). A calculator for converting A1C results into estimated average glucose (eAG), in either mg/dl or mmol/l, is available at http://professional.diabetes.org/eAG.
In the ADAG trial, there were no significant differences among racial and ethnic groups in the regression lines between A1C and mean glucose, although there was a trend toward a difference between African/African American participants and Caucasian ones that might have been significant had more African/African American participants been studied. A recent study comparing A1C with CGM data in 48 type 1 diabetic children found a highly statistically significant correlation between A1C and mean blood glucose, although the correlation (r = 0.7) was significantly lower than in the ADAG trial (53). Whether there are significant differences in how A1C relates to average glucose in children or in African American patients is an area for further study. For the time being, the question has not led to different recommendations about testing A1C or to different interpretations of the clinical meaning of given levels of A1C in those populations.
For patients in whom A1C/eAG and measured blood glucose appear discrepant, clinicians should consider the possibilities of hemoglobinopathy or altered red cell turnover, and the options of more frequent and/or different timing of SMBG or use of CGM. Other measures of chronic glycemia such as fructosamine are available, but their linkage to average glucose and their prognostic significance are not as clear as is the case for A1C.
2. Glycemic goals in adults
Recommendations
Lowering A1C to below or around 7% has been shown to reduce microvascular and neuropathic complications of diabetes and, if implemented soon after the diagnosis of diabetes, is associated with long-term reduction in macrovascular disease. Therefore, a reasonable A1C goal for many nonpregnant adults is <7%. (B)
Because additional analyses from several randomized trials suggest a small but incremental benefit in microvascular outcomes with A1C values closer to normal, providers might reasonably suggest more stringent A1C goals for selected individual patients, if this can be achieved without significant hypoglycemia or other adverse effects of treatment. Such patients might include those with short duration of diabetes, long life expectancy, and no significant CVD. (B)
Conversely, less stringent A1C goals may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications, extensive comorbid conditions, and those with longstanding diabetes in whom the general goal is difficult to attain despite DSME, appropriate glucose monitoring, and effective doses of multiple glucose-lowering agents including insulin. (C)
Glycemic control is fundamental to the management of diabetes. The DCCT (47) (in patients with type 1 diabetes), the Kumamoto study (54), and the UK Prospective Diabetes Study (UKPDS) (55,56) (both in patients with type 2 diabetes) were prospective, randomized, controlled trials of intensive versus standard glycemic control in patients with relatively recently diagnosed diabetes. These trials showed definitively that improved glycemic control is associated with significantly decreased rates of microvascular (retinopathy and nephropathy) and neuropathic complications. Follow up of the DCCT cohorts in the Epidemiology of Diabetes Interventions and Complications (EDIC) study (57,58) and of the UKPDS cohort (59) has shown persistence of these microvascular benefits in previously intensively treated subjects, even though their glycemic control has been equivalent to that of previous standard arm subjects during follow-up.
Subsequent trials in patients with more long-standing type 2 diabetes, designed primarily to look at the role of intensive glycemic control on cardiovascular outcomes also confirmed a benefit, although more modest, on onset or progression of microvascular complications. The Veterans Affairs Diabetes Trial (VADT) showed significant reductions in albuminuria with intensive (achieved median A1C 6.9%) compared to standard glycemic control, but no difference in retinopathy and neuropathy (60,61). The Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) study of intensive versus standard glycemic control in type 2 diabetes found a statistically significant reduction in albuminuria with an A1C target of <6.5% (achieved median A1C 6.3%) compared to standard therapy achieving a median A1C of 7.0% (62). Recent analyses from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial have shown lower rates of measures of microvascular complications in the intensive glycemic control arm compared with the standard arm (63,64).
Epidemiological analyses of the DCCT and UKPDS (47,48) demonstrate a curvilinear relationship between A1C and microvascular complications. Such analyses suggest that, on a population level, the greatest number of complications will be averted by taking patients from very poor control to fair or good control. These analyses also suggest that further lowering of A1C from 7 to 6% is associated with further reduction in the risk of microvascular complications, albeit the absolute risk reductions become much smaller. Given the substantially increased risk of hypoglycemia (particularly in those with type 1 diabetes, but also in the recent type 2 trials), the concerning mortality findings in the ACCORD trial (65), and the relatively much greater effort required to achieve near-normoglycemia, the risks of lower targets may outweigh the potential benefits on microvascular complications on a population level. However, selected individual patients, especially those with little comorbidity and long life expectancy (who may reap the benefits of further lowering of glycemia below 7%) may, at patient and provider judgment, adopt glycemic targets as close to normal as possible as long as significant hypoglycemia does not become a barrier.
Whereas many epidemiologic studies and meta-analyses (66,67) have clearly shown a direct relationship between A1C and CVD, the potential of intensive glycemic control to reduce CVD has been less clearly defined. In the DCCT, there was a trend toward lower risk of CVD events with intensive control. However, 9-year post-DCCT follow-up of the cohort has shown that participants previously randomized to the intensive arm had a 42% reduction (P = 0.02) in CVD outcomes and a 57% reduction (P = 0.02) in the risk of nonfatal myocardial infarction (MI), stroke, or CVD death compared with those previously in the standard arm (68). The benefit of intensive glycemic control in this type 1 cohort has recently been shown to persist for several decades (69).
The UKPDS trial of type 2 diabetes observed a 16% reduction in cardiovascular complications (combined fatal or nonfatal MI and sudden death) in the intensive glycemic control arm, although this difference was not statistically significant (P = 0.052), and there was no suggestion of benefit on other CVD outcomes such as stroke. However, 10 years of follow-up of the UKPDS cohort demonstrated, for participants originally randomized to intensive glycemic control compared with those randomized to conventional glycemic control, long-term reductions in MI (15% with sulfonylurea or insulin as initial pharmacotherapy, 33% with metformin as initial pharmacotherapy, both statistically significant) and in all-cause mortality (13 and 27%, respectively, both statistically significant) (59).
Results of three large trials (ACCORD, ADVANCE, and VADT) suggested no significant reduction in CVD outcomes with intensive glycemic control in these populations, who had more advanced diabetes than UKPDS participants. Details of these three studies are reviewed extensively in a recent ADA position statement (70).
The glycemic control arm of ACCORD was halted early due to the finding of an increased rate of mortality in the intensive arm compared with the standard arm (1.41% vs. 1.14% per year; HR 1.22 [95% CI 1.01 to 1.46]); with a similar increase in cardiovascular deaths. The primary outcome of ACCORD (MI, stroke, or cardiovascular death) was lower in the intensive glycemic control group, due to a reduction in nonfatal MI, but this reduction was not statistically significant when the study was terminated (65).
The potential cause of excess deaths in the intensive group of the ACCORD has been difficult to pinpoint. Exploratory analyses of the mortality findings of ACCORD (evaluating variables including weight gain, use of any specific drug or drug combination, and hypoglycemia) were reportedly unable to identify a clear explanation for the excess mortality in the intensive arm. The ACCORD investigators subsequently published additional analyses showing no increase in mortality in the intensive arm participants who achieved A1C levels <7% or in those who lowered their A1C quickly after trial enrollment. In fact, the converse was observed—those at highest risk for mortality were participants in the intensive arm with the highest A1C levels (71).
The primary outcome of ADVANCE was a combination of microvascular events (nephropathy and retinopathy) and major adverse cardiovascular events (MI, stroke, and cardiovascular death). Intensive glycemic control significantly reduced the primary end point, although this was due to a significant reduction in the microvascular outcome, primarily development of macroalbuminuria, with no significant reduction in the macrovascular outcome. There was no difference in overall or cardiovascular mortality between the intensive compared with the standard glycemic control arms (62).
The VADT randomized participants with type 2 diabetes uncontrolled on insulin or maximal dose oral agents (median entry A1C 9.4%) to a strategy of intensive glycemic control (goal A1C <6.0%) or standard glycemic control, with a planned A1C separation of at least 1.5%. The primary outcome of the VADT was a composite of CVD events. The cumulative primary outcome was nonsignificantly lower in the intensive arm (60).
Unlike the UKPDS, which was carried out in patients with newly diagnosed diabetes, all three of the recent type 2 cardiovascular trials were conducted in participants with established diabetes (mean duration 8–11 years) and either known CVD or multiple risk factors, suggesting the presence of established atherosclerosis. Subset analyses of the three trials suggested a significant benefit of intensive glycemic control on CVD in participants with shorter duration of diabetes, lower A1C at entry, and/or or absence of known CVD. The DCCT-EDIC study and the long-term follow-up of the UKPDS cohort both suggest that intensive glycemic control initiated soon after diagnosis of diabetes in patients with a lower level of CVD risk may impart long-term protection from CVD events. As is the case with microvascular complications, it may be that glycemic control plays a greater role before macrovascular disease is well developed and minimal or no role when it is advanced. Consistent with this concept, data from an ancillary study of the VADT demonstrated that intensive glycemic control was quite effective in reducing CVD events in individuals with less atherosclerosis at baseline (assessed by coronary calcium) but not in persons with more extensive baseline atherosclerosis (72).
The evidence for a cardiovascular benefit of intensive glycemic control primarily rests on long-term follow-up of study cohorts treated early in the course of type 1 and type 2 diabetes and subset analyses of ACCORD, ADVANCE, and VADT. A recent group-level meta-analysis of the latter three trials suggests that glucose lowering has a modest (9%) but statistically significant reduction in major CVD outcomes, primarily nonfatal MI, with no significant effect on mortality. A prespecified subgroup analysis suggested that major CVD outcome reduction occurred in patients without known CVD at baseline (HR 0.84 [95% CI 0.74–0.94]) (73). Conversely, the mortality findings in ACCORD and subgroup analyses of VADT suggest that the potential risks of very intensive glycemic control may outweigh its benefits in some patients, such as those with very long duration of diabetes, known history of severe hypoglycemia, advanced atherosclerosis, and advanced age/frailty. Certainly, providers should be vigilant in preventing severe hypoglycemia in patients with advanced disease and should not aggressively attempt to achieve near-normal A1C levels in patients in whom such a target cannot be reasonably easily and safely achieved.
Recommended glycemic goals for many nonpregnant adults are shown in Table 10. The recommendations are based on those for A1C values, with listed blood glucose levels that appear to correlate with achievement of an A1C of <7%. Less-stringent treatment goals may be appropriate for adults with limited life expectancies or advanced vascular disease. Glycemic goals for children are provided in VII.A.1.a. Glycemic control. Severe or frequent hypoglycemia is an absolute indication for the modification of treatment regimens, including setting higher glycemic goals.
A1C | <7.0%* |
Preprandial capillary plasma glucose | 70–130 mg/dl* (3.9–7.2 mmol/l) |
Peak postprandial capillary plasma glucose†
| <180 mg/dl* (<10.0 mmol/l) |
A1C | <7.0%* |
Preprandial capillary plasma glucose | 70–130 mg/dl* (3.9–7.2 mmol/l) |
Peak postprandial capillary plasma glucose†
| <180 mg/dl* (<10.0 mmol/l) |
Postprandial glucose measurements should be made 1–2 h after the beginning of the meal, generally peak levels in patients with diabetes.
The issue of pre- versus postprandial SMBG targets is complex (74). Elevated postchallenge (2-h OGTT) glucose values have been associated with increased cardiovascular risk independent of FPG in some epidemiological studies. In diabetic subjects, some surrogate measures of vascular pathology, such as endothelial dysfunction, are negatively affected by postprandial hyperglycemia (75). It is clear that postprandial hyperglycemia, like preprandial hyperglycemia, contributes to elevated A1C levels, with its relative contribution being higher at A1C levels that are closer to 7%. However, outcome studies have clearly shown A1C to be the primary predictor of complications, and landmark glycemic control trials such as the DCCT and UKPDS relied overwhelmingly on preprandial SMBG. Additionally, a randomized controlled trial in patients with known CVD found no CVD benefit of insulin regimens targeting postprandial glucose compared with targeting preprandial glucose (76). A reasonable recommendation for postprandial testing and targets is that for individuals who have premeal glucose values within target but have A1C values above target, monitoring postprandial plasma glucose (PPG) 1–2 h after the start of the meal and treatment aimed at reducing PPG values to <180 mg/dl may help lower A1C.
As regards goals for glycemic control for women with GDM, recommendations from the Fifth International Workshop-Conference on Gestational Diabetes (77) were to target maternal capillary glucose concentrations of:
Preprandial ≤95 mg/dl (5.3 mmol/l) and either
1-h postmeal ≤140 mg/dl (7.8 mmol/l)
or
2-h postmeal ≤120 mg/dl (6.7 mmol/l)
For women with preexisting type 1 or type 2 diabetes who become pregnant, a recent consensus statement (78) recommended the following as optimal glycemic goals, if they can be achieved without excessive hypoglycemia:
premeal, bedtime, and overnight glucose 60–99 mg/dl (3.3–5.4 mmol/l)
peak postprandial glucose 100–129 mg/dl (5.4–7.1mmol/l)
A1C <6.0%
D. Pharmacologic and overall approaches to treatment
1. Therapy for type 1 diabetes
The DCCT clearly showed that intensive insulin therapy (three or more injections per day of insulin, or continuous subcutaneous insulin infusion (CSII) (insulin pump therapy) was a key part of improved glycemia and better outcomes (47,68). At the time of the study, therapy was carried out with short- and intermediate-acting human insulins. Despite better microvascular outcomes, intensive insulin therapy was associated with a high rate in severe hypoglycemia (62 episodes per 100 patient-years of therapy). Since the time of the DCCT, a number of rapid-acting and long-acting insulin analogs have been developed. These analogs are associated with less hypoglycemia with equal A1C-lowering in type 1 diabetes (79,80).
Therefore, recommended therapy for type 1 diabetes consists of the following components: 1) use of multiple dose insulin injections (three to four injections per day of basal and prandial insulin) or CSII therapy; 2) matching of prandial insulin to carbohydrate intake, premeal blood glucose, and anticipated activity; and 3) for many patients (especially if hypoglycemia is a problem), use of insulin analogs. There are excellent reviews available that guide the initiation and management of insulin therapy to achieve desired glycemic goals (3,79,81).
Because of the increased frequency of other autoimmune diseases in type 1 diabetes, screening for thyroid dysfunction, vitamin B12 deficiency, or celiac disease should be considered based on signs and symptoms. Periodic screening in absence of symptoms has been recommended, but the effectiveness and optimal frequency are unclear.
2. Therapy for type 2 diabetes
The ADA and the EASD published an expert consensus statement on the approach to management of hyperglycemia in individuals with type 2 diabetes (82). Highlights of this approach are: intervention at the time of diagnosis with metformin in combination with lifestyle changes (MNT and exercise) and continuing timely augmentation of therapy with additional agents (including early initiation of insulin therapy) as a means of achieving and maintaining recommended levels of glycemic control (i.e., A1C <7% for most patients). As A1C targets are not achieved, treatment intensification is based on the addition of another agent from a different class. The overall objective is to achieve and maintain glycemic control and to change interventions when therapeutic goals are not being met.
The algorithm took into account the evidence for A1C-lowering of the individual interventions, their additive effects, and their expense. The precise drugs used and their exact sequence may not be as important as achieving and maintaining glycemic targets safely. Medications not included in the consensus algorithm, owing to less glucose-lowering effectiveness, limited clinical data, and/or relative expense, still may be appropriate choices in individual patients to achieve glycemic goals. Initiation of insulin at time of diagnosis is recommended for individuals presenting with weight loss or other severe hyperglycemic symptoms or signs.
E. Diabetes self-management education
Recommendations
People with diabetes should receive diabetes self-management education (DSME) according to national standards when their diabetes is diagnosed and as needed thereafter. (B)
Effective self-management and quality of life are the key outcomes of DSME and should be measured and monitored as part of care. (C)
DSME should address psychosocial issues, since emotional well-being is associated with positive diabetes outcomes. (C)
Because DSME can result in cost-savings and improved outcomes (B), DSME should be adequately reimbursed by third-party payors. (E)
DSME is an essential element of diabetes care (83,,,,–88), and national standards for DSME (89) are based on evidence for its benefits. Education helps people with diabetes initiate effective self-management and cope with diabetes when they are first diagnosed. Ongoing DSME and support also help people with diabetes maintain effective self-management throughout a lifetime of diabetes as they face new challenges and treatment advances become available. DSME helps patients optimize metabolic control, prevent and manage complications, and maximize quality of life in a cost-effective manner (90).
DSME is the ongoing process of facilitating the knowledge, skill, and ability necessary for diabetes self-care. This process incorporates the needs, goals, and life experiences of the person with diabetes. The overall objectives of DSME are to support informed decision-making, self-care behaviors, problem-solving, and active collaboration with the health care team to improve clinical outcomes, health status, and quality of life in a cost-effective manner (89).
Current best practice of DSME is a skills-based approach that focuses on helping those with diabetes to make informed self-management choices. DSME has changed from a didactic approach focusing on providing information to more theoretically based empowerment models that focus on helping those with diabetes make informed self-management decisions. Care of diabetes has shifted to an approach that is more patient centered and places the person with diabetes and his or her family at the center of the care model working in collaboration with health care professionals. Patient-centered care is respectful of and responsive to individual patient preferences, needs, and values and ensures that patient values guide all decision making (91).
Evidence for the benefits of DSME
Multiple studies have found that DSME is associated with improved diabetes knowledge and improved self-care behavior (83), improved clinical outcomes such as lower A1C (84,85,87,88,92), lower self-reported weight (83), improved quality of life (86,93), healthy coping (94), and lower costs (95). Better outcomes were reported for DSME interventions that were longer and included follow-up support (83,96,,–99), that were culturally (100,101) and age appropriate (102,103) and tailored to individual needs and preferences, and that addressed psychosocial issues and incorporated behavioral strategies (83,87,104,–106). Both individual and group approaches have been found effective (107,,–110). There is growing evidence for the role of community health workers and peer (111,112) and lay leaders (113) in delivering DSME and support in addition to the core team (114).
Diabetes education is associated with increased use of primary and preventive services and lower use of acute, inpatient hospital services (95). Patients who participate in diabetes education are more likely to follow best practice treatment recommendations, particularly among the Medicare population, and have lower Medicare and commercial claim costs (115).
National standards for DSME
National standards for DSME are designed to define quality DSME and to assist diabetes educators in a variety of settings to provide evidence-based education (89). The standards, most recently revised in 2007, are reviewed and updated every 5 years by a task force representing key organizations involved in the field of diabetes education and care.
Reimbursement for DSME
DSME, when provided by a program that meets the national standards for DSME and is recognized by the ADA or other approval bodies, is reimbursed as partof the Medicare program as overseen by the Centers for Medicare and Medicaid Services (CMS) (www.cms.hhs.gov/DiabetesSelfManagement). DSME is also covered by a growing number of other health insurance plans.
F. Medical nutrition therapy
General recommendations
Individuals who have prediabetes or diabetes should receive individualized medical nutrition therapy (MNT) as needed to achieve treatment goals, preferably provided by a registered dietitian familiar with the components of diabetes MNT. (A)
Because MNT can result in cost-savings and improved outcomes (B), MNT should be adequately covered by insurance and other payors. (E)
Energy balance, overweight, and obesity
In overweight and obese insulin-resistant individuals, modest weight loss has been shown to reduce insulin resistance. Thus, weight loss is recommended for all overweight or obese individuals who have or are at risk for diabetes. (A)
For weight loss, either low-carbohydrate, low-fat calorie-restricted, or Mediterranean diets may be effective in the short-term (up to 2 years). (A)
For patients on low-carbohydrate diets, monitor lipid profiles, renal function, and protein intake (in those with nephropathy), and adjust hypoglycemic therapy as needed. (E)
Physical activity and behavior modification are important components of weight loss programs and are most helpful in maintenance of weight loss. (B)
Recommendations for primary prevention of diabetes
Among individuals at high risk for developing type 2 diabetes, structured programs that emphasize lifestyle changes that include moderate weight loss (7% body weight) and regular physical activity (150 min/week), with dietary strategies including reduced calories and reduced intake of dietary fat, can reduce the risk for developing diabetes and are therefore recommended. (A)
Individuals at high risk for type 2 diabetes should be encouraged to achieve the U.S. Department of Agriculture (USDA) recommendation for dietary fiber (14 g fiber/1,000 kcal) and foods containing whole grains (one-half of grain intake). (B)
Recommendations for management of diabetes
Macronutrients in diabetes management
The best mix of carbohydrate, protein, and fat may be adjusted to meet the metabolic goals and individual preferences of the person with diabetes. (E)
Monitoring carbohydrate, whether by carbohydrate counting, choices, or experience-based estimation, remains a key strategy in achieving glycemic control. (A)
For individuals with diabetes, the use of the glycemic index and glycemic load may provide a modest additional benefit for glycemic control over that observed when total carbohydrate is considered alone. (B)
Saturated fat intake should be <7% of total calories. (A)
Reducing intake of trans fat lowers LDL cholesterol and increases HDL cholesterol (A), therefore intake of trans fat should be minimized. (E)
Other nutrition recommendations
If adults with diabetes choose to use alcohol, daily intake should be limited to a moderate amount (one drink per day or less for adult women and two drinks per day or less for adult men). (E)
Routine supplementation with antioxidants, such as vitamins E and C and carotene, is not advised because of lack of evidence of efficacy and concern related to long-term safety. (A)
Individualized meal planning should include optimization of food choices to meet recommended dietary allowance (RDA)/dietary reference intake (DRI) for all micronutrients. (E)
MNT is an integral component of diabetes prevention, management, and self-management education. In addition to its role in preventing and controlling diabetes, ADA recognizes the importance of nutrition as an essential component of an overall healthy lifestyle. A full review of the evidence regarding nutrition in preventing and controlling diabetes and its complications and additional nutrition-related recommendations can be found in the ADA position statement, “Nutrition Recommendations and Interventions for Diabetes,” published in 2007 and updated for 2008 (116). Achieving nutrition-related goals requires a coordinated team effort that includes the active involvement of the person with prediabetes or diabetes. Because of the complexity of nutrition issues, it is recommended that a registered dietitian who is knowledgeable and skilled in implementing nutrition therapy into diabetes management and education be the team member who provides MNT.
Clinical trials/outcome studies of MNT have reported decreases in A1C at 3–6 months ranging from 0.25% to 2.9% with higher reductions seen in type 2 diabetes of shorter duration. Multiple studies have demonstrated sustained improvements in A1C at 12 months and longer when an Registered Dietitian provided follow-up visits ranging from monthly to three sessions per year (117,,,,,,–124). Studies in nondiabetic people suggest that MNT reduces LDL cholesterol by 15–25 mg/dl up to 16% (125) and support a role for lifestyle modification in treating hypertension (125,126).
Because of the effects of obesity on insulin resistance, weight loss is an important therapeutic objective for overweight or obese individuals with prediabetes or diabetes (127). Short-term studies have demonstrated that moderate weight loss (5% of body weight) in subjects with type 2 diabetes is associated with decreased insulin resistance, improved measures of glycemia and lipemia, and reduced blood pressure (128); longer-term studies (52 weeks) showed mixed effects on A1C in adults with type 2 diabetes (129,–131), and in some studies results were confounded by pharmacologic weight loss therapy. A systematic review of 80 weight loss studies of ≥1 year in duration demonstrated that moderate weight loss achieved through diet alone, diet and exercise, and meal replacements can be achieved and maintained (4.8–8% weight loss at 12 months) (132). The multifactorial intensive lifestyle intervention employed in the DPP, which included reduced intake of fat and calories, led to weight loss averaging 7% at 6 months and maintenance of 5% weight loss at 3 years, associated with a 58% reduction in incidence of type 2 diabetes (13). A recent randomized controlled trial looking at high-risk individuals in Spain showed the Mediterranean dietary pattern reduced the incidence of diabetes in the absence of weight loss by 52% compared to the low-fat control group (133). Look AHEAD (Action for Health in Diabetes) is a large clinical trial designed to determine whether long-term weight loss will improve glycemia and prevent cardiovascular events in subjects with type 2 diabetes. One-year results of the intensive lifestyle intervention in this trial show an average 8.6% weight loss, significant reduction of A1C, and reduction in several CVD risk factors (134), with benefits sustained at 4 years (135). When completed, the Look AHEAD study should provide insight into the effects of long-term weight loss on important clinical outcomes.
The optimal macronutrient distribution of weight loss diets has not been established. Although low-fat diets have traditionally been promoted for weight loss, several randomized controlled trials found that subjects on low-carbohydrate diets (<130 g/day of carbohydrate) lost more weight at 6 months than subjects on low-fat diets (136,137); however, at 1 year, the difference in weight loss between the low-carbohydrate and low-fat diets was not significant, and weight loss was modest with both diets. A study comparing low-fat to low-carbohydrate diets, both combined with a comprehensive lifestyle program, showed the same amount of weight loss (7%) at 2 years in both groups (138). Another study of overweight women randomized to one of four diets showed significantly more weight loss at 12 months with the Atkins low-carbohydrate diet than with higher-carbohydrate diets (139). Changes in serum triglyceride and HDL cholesterol were more favorable with the low-carbohydrate diets. In one study, those subjects with type 2 diabetes demonstrated a greater decrease in A1C with a low-carbohydrate diet than with a low-fat diet (137). A recent meta-analysis showed that at 6 months, low-carbohydrate diets were associated with greater improvements in triglyceride and HDL cholesterol concentrations than low-fat diets; however, LDL cholesterol was significantly higher on the low-carbohydrate diets (140). In a 2-year dietary intervention study, Mediterranean and low-carbohydrate diets were found to be effective and safe alternatives to a low-fat diet for weight reduction in moderately obese participants (141).
The RDA for digestible carbohydrate is 130 g/day and is based on providing adequate glucose as the required fuel for the central nervous system without reliance on glucose production from ingested protein or fat. Although brain fuel needs can be met on lower-carbohydrate diets, long term metabolic effects of very-low-carbohydrate diets are unclear, and such diets eliminate many foods that are important sources of energy, fiber, vitamins, and minerals and are important in dietary palatability (142).
Although numerous studies have attempted to identify the optimal mix of macronutrients for meal plans of people with diabetes, it is unlikely that one such combination of macronutrients exists. The best mix of carbohydrate, protein, and fat appears to vary depending on individual circumstances. It must be clearly recognized that regardless of the macronutrient mix, total caloric intake must be appropriate to weight management goal. Further, individualization of the macronutrient composition will depend on the metabolic status of the patient (e.g., lipid profile, renal function) and/or food preferences. Plant-based diets (vegan or vegetarian) that are well planned and nutritionally adequate have also been shown to improve metabolic control (143,144).
The primary goal with respect to dietary fat in individuals with diabetes is to limit saturated fatty acids, trans fatty acids, and cholesterol intake so as to reduce risk for CVD. Saturated and trans fatty acids are the principal dietary determinants of plasma LDL cholesterol. There is a lack of evidence on the effects of specific fatty acids on people with diabetes, so the recommended goals are consistent with those for individuals with CVD (125,145).
Reimbursement for MNT
MNT, when delivered by a registered dietitian according to nutrition practice guidelines, is reimbursed as part of the Medicare program as overseen by the Centers for Medicare and Medicaid Services (CMS) (www.cms.hhs.gov/medicalnutritiontherapy).
G. Physical activity
Recommendations
People with diabetes should be advised to perform at least 150 min/week of moderate-intensity aerobic physical activity (50–70% of maximum heart rate). (A)
In the absence of contraindications, people with type 2 diabetes should be encouraged to perform resistance training three times per week. (A)
Exercise is an important part of the diabetes management plan. Regular exercise has been shown to improve blood glucose control, reduce cardiovascular risk factors, contribute to weight loss, and improve well-being. Furthermore, regular exercise may prevent type 2 diabetes in high-risk individuals (13,–15). Structured exercise interventions of at least 8 weeks' duration have been shown to lower A1C by an average of 0.66% in people with type 2 diabetes, even with no significant change in BMI (146). Higher levels of exercise intensity are associated with greater improvements in A1C and in fitness (147). A new joint position statement of the American Diabetes Association and the American College of Sports Medicine summarizes the evidence for the benefits of exercise in people with type 2 diabetes (148).
Frequency and type of exercise
The U.S. Department of Health and Human Services' Physical Activity Guidelines for Americans (149) suggest that adults over age 18 years do 150 min/week of moderate-intensity, or 75 min/week of vigorous aerobic physical activity, or an equivalent combination of the two. In addition, the guidelines suggest that adults also do muscle-strengthening activities that involve all major muscle groups two or more days per week. The guidelines suggest that adults over age 65 years, or those with disabilities, follow the adult guidelines if possible or (if this is not possible) be as physically active as they are able. Studies included in the meta-analysis of effects of exercise interventions on glycemic control (146) had a mean number of sessions per week of 3.4, with a mean of 49 min/session. The DPP lifestyle intervention, which included 150 min/week of moderate intensity exercise, had a beneficial effect on glycemia in those with prediabetes. Therefore, it seems reasonable to recommend that people with diabetes try to follow the physical activity guidelines for the general population.
Progressive resistance exercise improves insulin sensitivity in older men with type 2 diabetes to the same or even a greater extent as aerobic exercise (150). Clinical trials have provided strong evidence for the A1C-lowering value of resistance training in older adults with type 2 diabetes (151,152) and for an additive benefit of combined aerobic and resistance exercise in adults with type 2 diabetes (153).
Evaluation of the diabetic patient before recommending an exercise program
Prior guidelines suggested that before recommending a program of physical activity, the provider should assess patients with multiple cardiovascular risk factors for coronary artery disease (CAD). As discussed more fully in VI.A.5. Coronary heart disease screening and treatment, the area of screening asymptomatic diabetic patients for CAD remains unclear, and a recent ADA consensus statement on this issue concluded that routine screening is not recommended (154). Providers should use clinical judgment in this area. Certainly, high risk patients should be encouraged to start with short periods of low intensity exercise and increase the intensity and duration slowly.
Providers should assess patients for conditions that might contraindicate certain types of exercise or predispose to injury, such as uncontrolled hypertension, severe autonomic neuropathy, severe peripheral neuropathy or history of foot lesions, and unstable proliferative retinopathy. The patient's age and previous physical activity level should be considered.
Exercise in the presence of nonoptimal glycemic control
Hyperglycemia.
When people with type 1 diabetes are deprived of insulin for 12–48 h and are ketotic, exercise can worsen hyperglycemia and ketosis (155); therefore, vigorous activity should be avoided in the presence of ketosis. However, it is not necessary to postpone exercise based simply on hyperglycemia, provided the patient feels well and urine and/or blood ketones are negative.
Hypoglycemia.
In individuals taking insulin and/or insulin secretagogues, physical activity can cause hypoglycemia if medication dose or carbohydrate consumption is not altered. For individuals on these therapies, added carbohydrate should be ingested if pre-exercise glucose levels are <100 mg/dl (5.6 mmol/l). Hypoglycemia is rare in diabetic individuals who are not treated with insulin or insulin secretagogues, and no preventive measures for hypoglycemia are usually advised in these cases.
Exercise in the presence of specific long-term complications of diabetes
Retinopathy.
In the presence of proliferative diabetic retinopathy (PDR) or severe nonproliferative diabetic retinopathy (NPDR), vigorous aerobic or resistance exercise may be contraindicated because of the risk of triggering vitreous hemorrhage or retinal detachment (156).
Peripheral neuropathy.
Decreased pain sensation in the extremities results in increased risk of skin breakdown and infection and of Charcot joint destruction. Prior recommendations have advised non–weight-bearing exercise for patients with severe peripheral neuropathy. However, studies have shown that moderate-intensity walking may not lead to increased risk of foot ulcers or re-ulceration in those with peripheral neuropathy (157). All individuals with peripheral neuropathy should wear proper footwear and examine their feet daily to detect lesions early. Anyone with a foot injury or open sore should be restricted to non–weight-bearing activities.
Autonomic neuropathy.
Autonomic neuropathy can increase the risk of exercise-induced injury or adverse event through decreased cardiac responsiveness to exercise, postural hypotension, impaired thermoregulation, impaired night vision due to impaired papillary reaction, and unpredictable carbohydrate delivery from gastroparesis predisposing to hypoglycemia (158). Autonomic neuropathy is also strongly associated with CVD in people with diabetes (159,160). People with diabetic autonomic neuropathy should undergo cardiac investigation before beginning physical activity more intense than that to which they are accustomed.
Albuminuria and nephropathy.
Physical activity can acutely increase urinary protein excretion. However, there is no evidence that vigorous exercise increases the rate of progression of diabetic kidney disease, and there is likely no need for any specific exercise restrictions for people with diabetic kidney disease (161).
H. Psychosocial assessment and care
Recommendations
Assessment of psychological and social situation should be included as an ongoing part of the medical management of diabetes. (E)
Psychosocial screening and follow-up should include, but is not limited to, attitudes about the illness, expectations for medical management and outcomes, affect/mood, general and diabetes-related quality of life, resources (financial, social, and emotional), and psychiatric history. (E)
Screen for psychosocial problems such as depression and diabetes-related distress, anxiety, eating disorders, and cognitive impairment when self-management is poor. (C)
Psychological and social problems can impair the individual's (162,,–165) or family's ability to carry out diabetes care tasks and therefore compromise health status. There are opportunities for the clinician to assess psychosocial status in a timely and efficient manner so that referral for appropriate services can be accomplished.
Key opportunities for screening of psychosocial status occur at diagnosis, during regularly scheduled management visits, during hospitalizations, at discovery of complications, or when problems with glucose control, quality of life, or adherence are identified. Patients are likely to exhibit psychological vulnerability at diagnosis and when their medical status changes, e.g., the end of the honeymoon period, when the need for intensified treatment is evident, and when complications are discovered (164).
Issues known to impact self-management and health outcomes include but are not limited to: attitudes about the illness, expectations for medical management and outcomes, affect/mood, general and diabetes-related quality of life, diabetes-related distress (166), resources (financial, social, and emotional) (167), and psychiatric history (168,–170). Screening tools are available for a number of these areas (105). Indications for referral to a mental health specialist familiar with diabetes management may include: gross noncompliance with medical regimen (by self or others) (170), depression with the possibility of self-harm, debilitating anxiety (alone or with depression), indications of an eating disorder (171), or cognitive functioning that significantly impairs judgment. It is preferable to incorporate psychological assessment and treatment into routine care rather than waiting for identification of a specific problem or deterioration in psychological status (105). Although the clinician may not feel qualified to treat psychological problems, utilizing the patient-provider relationship as a foundation for further treatment can increase the likelihood that the patient will accept referral for other services. It is important to establish that emotional well-being is part of diabetes management.
I. When treatment goals are not met
For a variety of reasons, some people with diabetes and their health care providers do not achieve the desired goals of treatment (Table 10). Re-thinking the treatment regimen may require assessment of barriers including income, health literacy, diabetes distress, depression, and competing demands, including those related to family responsibilities and dynamics. Other strategies may include culturally appropriate and enhanced DSME, co-management with a diabetes team, referral to a medical social worker for assistance with insurance coverage, or change in pharmacological therapy. Initiation of or increase in SMBG, utilization of CGM, frequent contact with the patient, or referral to a mental health professional or physician with special expertise in diabetes may be useful. Providing patients with an algorithm for self-titration of insulin doses based on SMBG results may be helpful for type 2 patients who take insulin (172).
J. Hypoglycemia
Recommendations
Glucose (15–20 g) is the preferred treatment for the conscious individual with hypoglycemia, although any form of carbohydrate that contains glucose may be used. If SMBG 15 min after treatment shows continued hypoglycemia, the treatment should be repeated. Once SMBG glucose returns to normal, the individual should consume a meal or snack to prevent recurrence of hypoglycemia. (E)
Glucagon should be prescribed for all individuals at significant risk of severe hypoglycemia, and caregivers or family members of these individuals should be instructed in its administration. Glucagon administration is not limited to health care professionals. (E)
Individuals with hypoglycemia unawareness or one or more episodes of severe hypoglycemia should be advised to raise their glycemic targets to strictly avoid further hypoglycemia for at least several weeks, to partially reverse hypoglycemia unawareness and reduce risk of future episodes. (B)
Hypoglycemia is the leading limiting factor in the glycemic management of type 1 and insulin-treated type 2 diabetes (173). Mild hypoglycemia may be inconvenient or frightening to patients with diabetes, and more severe hypoglycemia can cause acute harm to the person with diabetes or others, if it causes falls, motor vehicle accidents, or other injury. A large cohort study suggested that among older adults with type 2 diabetes, a history of severe hypoglycemia was associated with greater risk of dementia (174). Conversely, evidence from the DCCT/EDIC trial, which involved younger type 1 patients, suggested no association of frequency of severe hypoglycemia with cognitive decline (175). Treatment of hypoglycemia (plasma glucose <70 mg/dl) requires ingestion of glucose- or carbohydrate-containing foods. The acute glycemic response correlates better with the glucose content than with the carbohydrate content of the food. Although pure glucose is the preferred treatment, any form of carbohydrate that contains glucose will raise blood glucose. Added fat may retard and then prolong the acute glycemic response. Ongoing activity of insulin or insulin secretagogues may lead to recurrence of hypoglycemia unless further food is ingested after recovery.
Severe hypoglycemia (where the individual requires the assistance of another person and cannot be treated with oral carbohydrate due to confusion or unconsciousness) should be treated using emergency glucagon kits, which require a prescription. Those in close contact with, or having custodial care of, people with hypoglycemia-prone diabetes (family members, roommates, school personnel, child care providers, correctional institution staff, or coworkers), should be instructed in use of such kits. An individual does not need to be a health care professional to safely administer glucagon. Care should be taken to ensure that unexpired glucagon kits are available.
Prevention of hypoglycemia is a critical component of diabetes management. Teaching people with diabetes to balance insulin use, carbohydrate intake, and exercise is a necessary but not always sufficient strategy. In type 1 diabetes and severely insulin-deficient type 2 diabetes, the syndrome of hypoglycemia unawareness, or hypoglycemia-associated autonomic failure, can severely compromise stringent diabetes control and quality of life. The deficient counterregulatory hormone release and autonomic responses in this syndrome are both risk factors for, and caused by, hypoglycemia. A corollary to this “vicious cycle” is that several weeks of avoidance of hypoglycemia has been demonstrated to improve counterregulation and awareness to some extent in many patients (176). Hence, patients with one or more episodes of severe hypoglycemia may benefit from at least short-term relaxation of glycemic targets.
K. Intercurrent illness
The stress of illness, trauma, and/or surgery frequently aggravates glycemic control and may precipitate diabetic ketoacidosis (DKA) or nonketotic hyperosmolar state, life-threatening conditions that require immediate medical care to prevent complications and death. Any condition leading to deterioration in glycemic control necessitates more frequent monitoring of blood glucose and (in ketosis-prone patients) urine or blood ketones. Marked hyperglycemia requires temporary adjustment of the treatment program and, if accompanied by ketosis, vomiting, or alteration in level of consciousness, immediate interaction with the diabetes care team. The patient treated with noninsulin therapies or MNT alone may temporarily require insulin. Adequate fluid and caloric intake must be assured. Infection or dehydration are more likely to necessitate hospitalization of the person with diabetes than the person without diabetes.
The hospitalized patient should be treated by a physician with expertise in the management of diabetes. For further information on management of patients with hyperglycemia in the hospital, see VIII.A. Diabetes care in the hospital. For further information on management of DKA or nonketotic hyperosmolar state, refer to the ADA consensus statement on hyperglycemic crises (172).
L. Bariatric surgery
Recommendations
Bariatric surgery may be considered for adults with BMI >35 kg/m2 and type 2 diabetes, especially if the diabetes or associated comorbidities are difficult to control with lifestyle and pharmacologic therapy. (B)
Patients with type 2 diabetes who have undergone bariatric surgery need life-long lifestyle support and medical monitoring. (E)
Although small trials have shown glycemic benefit of bariatric surgery in patients with type 2 diabetes and BMI of 30–35 kg/m2, there is currently insufficient evidence to generally recommend surgery in patients with BMI <35 kg/m2 outside of a research protocol. (E)
The long-term benefits, cost-effectiveness, and risks of bariatric surgery in individuals with type 2 diabetes should be studied in well-designed controlled trials with optimal medical and lifestyle therapy as the comparator. (E)
Gastric reduction surgery, either gastric banding or procedures that involve bypassing, transposing, or resecting sections of the small intestine, when part of a comprehensive team approach, can be an effective weight loss treatment for severe obesity, and national guidelines support its consideration for people with type 2 diabetes who have BMI exceeding 35 kg/m2. Bariatric surgery has been shown to lead to near- or complete normalization of glycemia in ∼55–95% of patients with type 2 diabetes, depending on the surgical procedure. A meta-analysis of studies of bariatric surgery involving 3,188 patients with diabetes reported that 78% had remission of diabetes (normalization of blood glucose levels in the absence of medications), and that the remission rates were sustained in studies that had follow-up exceeding 2 years (177). Remission rates tend to be lower with procedures that only constrict the stomach, and higher with those that bypass portions of the small intestine. Additionally, there is a suggestion that intestinal bypass procedures may have glycemic effects that are independent of their effects on weight, perhaps involving the incretin axis.
One randomized controlled trial compared adjustable gastric banding to “best available” medical and lifestyle therapy in subjects with type 2 diabetes diagnosed less than 2 years before randomization and BMI 30–40 kg/m2 (178). In this trial, 73% of surgically treated patients achieved “remission” of their diabetes, compared with 13% of those treated medically. The latter group lost only 1.7% of body weight, suggesting that their therapy was not optimal. Overall the trial had 60 subjects, and only 13 had a BMI under 35 kg/m2, making it difficult to generalize these results widely to diabetic patients who are less severely obese or with longer duration of diabetes. In a more recent study involving 110 patients with type 2 diabetes and a mean BMI of 47 kg/m2, Roux-en-Y gastric bypass resulted in a mean loss of excess weight of 63% at 1 year and 84% at 2 years (179).
Bariatric surgery is costly in the short term and has some risks. Rates of morbidity and mortality directly related to the surgery have been reduced considerably in recent years, with 30-day mortality rates now 0.28%, similar to those of laparoscopic cholecystectomy (180). Longer-term concerns include vitamin and mineral deficiencies, osteoporosis, and rare but often severe hypoglycemia from insulin hypersecretion. Cohort studies attempting to match subjects suggest that the procedure may reduce longer-term mortality rates (181), and it is reasonable to postulate that there may be recouping of costs over the long run. Recent retrospective analyses and modeling studies suggest that these procedures may be cost effective, when one considers reduction in subsequent health care costs (182,–184). However, studies of the mechanisms of glycemic improvement and long-term benefits and risks of bariatric surgery in individuals with type 2 diabetes, especially those who are not severely obese, will require well-designed clinical trials, with optimal medical and lifestyle therapy of diabetes and cardiovascular risk factors as the comparator.
M. Immunization
Recommendations
Annually provide an influenza vaccine to all diabetic patients at least 6 months of age. (C)
Administer pneumococcal polysaccharide vaccine to all diabetic patients ≥2 years of age. A one-time revaccination is recommended for individuals >64 years of age previously immunized when they were <65 years of age if the vaccine was administered >5 years ago. Other indications for repeat vaccination include nephrotic syndrome, chronic renal disease, and other immunocompromised states, such as after transplantation. (C)
Influenza and pneumonia are common, preventable infectious diseases associated with high mortality and morbidity in the elderly and in people with chronic diseases. Though there are limited studies reporting the morbidity and mortality of influenza and pneumococcal pneumonia specifically in people with diabetes, observational studies of patients with a variety of chronic illnesses, including diabetes, show that these conditions are associated with an increase in hospitalizations for influenza and its complications. People with diabetes may be at increased risk of the bacteremic form of pneumococcal infection and have been reported to have a high risk of nosocomial bacteremia, which has a mortality rate as high as 50% (185).
Safe and effective vaccines are available that can greatly reduce the risk of serious complications from these diseases (186,187). In a case-control series, influenza vaccine was shown to reduce diabetes-related hospital admission by as much as 79% during flu epidemics (186). There is sufficient evidence to support that people with diabetes have appropriate serologic and clinical responses to these vaccinations. The Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices recommends influenza and pneumococcal vaccines for all individuals with diabetes (http://www.cdc.gov/vaccines/recs/).
VI. PREVENTION AND MANAGEMENT OF DIABETES COMPLICATIONS
A. CVD
CVD is the major cause of morbidity and mortality for individuals with diabetes, and the largest contributor to the direct and indirect costs of diabetes. The common conditions coexisting with type 2 diabetes (e.g., hypertension and dyslipidemia) are clear risk factors for CVD, and diabetes itself confers independent risk. Numerous studies have shown the efficacy of controlling individual cardiovascular risk factors in preventing or slowing CVD in people with diabetes. Large benefits are seen when multiple risk factors are addressed globally (188,189). Risk for coronary heart disease (CHD) and for CVD in general can be estimated using multivariable risk factor approaches, and such a strategy may be desirable to undertake in adult patients prior to instituting preventive therapy.
1. Hypertension/blood pressure control
Recommendations
Screening and diagnosis
Blood pressure should be measured at every routine diabetes visit. Patients found to have systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg should have blood pressure confirmed on a separate day. Repeat systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg confirms a diagnosis of hypertension. (C)
Goals
A goal systolic blood pressure <130 mmHg is appropriate for most patients with diabetes. (C)
Based on patient characteristics and response to therapy, higher or lower systolic blood pressure targets may be appropriate. (B)
Patients with diabetes should be treated to a diastolic blood pressure <80 mmHg. (B)
Treatment
Patients with a systolic blood pressure of 130–139 mmHg or a diastolic blood pressure of 80–89 mmHg may be given lifestyle therapy alone for a maximum of 3 months and then, if targets are not achieved, be treated with addition of pharmacological agents. (E)
Patients with more severe hypertension (systolic blood pressure ≥140 or diastolic blood pressure ≥90 mmHg) at diagnosis or follow-up should receive pharmacologic therapy in addition to lifestyle therapy. (A)
Lifestyle therapy for hypertension consists of: weight loss, if overweight; Dietary Approaches to Stop Hypertension (DASH)-style dietary pattern including reducing sodium and increasing potassium intake; moderation of alcohol intake; and increased physical activity. (B)
Pharmacologic therapy for patients with diabetes and hypertension should be with a regimen that includes either an ACE inhibitor or an ARB. If one class is not tolerated, the other should be substituted. If needed to achieve blood pressure targets, a thiazide diuretic should be added to those with an estimated GFR (eGFR) (see below) ≥30 ml/min/1.73 m2 and a loop diuretic for those with an eGFR <30 ml/min/1.73 m2. (C)
Multiple drug therapy (two or more agents at maximal doses) is generally required to achieve blood pressure targets. (B)
If ACE inhibitors, ARBs, or diuretics are used, kidney function and serum potassium levels should be monitored. (E)
In pregnant patients with diabetes and chronic hypertension, blood pressure target goals of 110–129/65–79 mmHg are suggested in the interest of long-term maternal health and minimizing impaired fetal growth. ACE inhibitors and ARBs are contraindicated during pregnancy. (E)
Hypertension is a common comorbidity of diabetes, affecting the majority of patients, with prevalence depending on type of diabetes, age, obesity, and ethnicity. Hypertension is a major risk factor for both CVD and microvascular complications. In type 1 diabetes, hypertension is often the result of underlying nephropathy, while in type 2 diabetes it usually coexists with other cardiometabolic risk factors.
Screening and diagnosis
Measurement of blood pressure in the office should be done by a trained individual and should follow the guidelines established for nondiabetic individuals: measurement in the seated position, with feet on the floor and arm supported at heart level, after 5 min of rest. Cuff size should be appropriate for the upper arm circumference. Elevated values should be confirmed on a separate day. Because of the clear synergistic risks of hypertension and diabetes, the diagnostic cut-off for a diagnosis of hypertension is lower in people with diabetes (blood pressure ≥130/80) than those without diabetes (blood pressure 140/90 mmHg) (190).
Home blood pressure self-monitoring and 24-h ambulatory blood pressure monitoring may provide additional evidence of “white coat” and masked hypertension and other discrepancies between office and “true” blood pressure, and in studies in nondiabetic populations, home measurements may better correlate with CVD risk than office measurements (191,192). However, the preponderance of the clear evidence of benefits of treatment of hypertension in people with diabetes is based on office measurements.
Treatment goals
Epidemiologic analyses show that blood pressure values >115/75 mmHg are associated with increased cardiovascular event rates and mortality in individuals with diabetes (190,193,194). Randomized clinical trials have demonstrated the benefit (reduction in CHD events, stroke, and nephropathy) of lowering blood pressure to <140 mmHg systolic and <80 mmHg diastolic in individuals with diabetes (190,195,–197). The ACCORD trial examined whether lowering blood pressure to a systolic <120 mmHg provides greater cardiovascular protection than a systolic blood pressure level of 130–140 mmHg in patients with type 2 diabetes at high risk for CVD (198). The blood pressure achieved was 119/64 mmHg in the intensive group and 133/70 mmHg in the standard group; the difference achieved was attained with an average of 3.4 medications per participant in the intensive group and 2.1 in the standard therapy group. The primary outcome was a composite of nonfatal MI, nonfatal stroke, and CVD death; the hazard ratio for the primary end point in the intensive group was 0.88 (95% CI 0.73–1.06; P = 0.20). Of the prespecified secondary end points, only stroke and nonfatal stroke were statistically significantly reduced by intensive blood pressure treatment, with a hazard ratio of 0.59 (95% CI 0.39–0.89, P = 0.01) and 0.63 (95% CI 0.41–0.96, P = 0.03), respectively. If this finding is real, the number needed to treat to prevent one stroke over the course of 5 years with intensive blood pressure management is 89.
In predefined subgroup analyses, there was a suggestion of heterogeneity (P = 0.08) based on whether participants were randomized to standard or intensive glycemia intervention. In those randomized to standard glycemic control, the event rate for the primary end point was 1.89 per year in the intensive blood pressure arm and 2.47 in the standard blood pressure arm, while the respective rates in the intensive glycemia arm were 1.85 and 1.73. If this observation is true, it suggests that intensive management to a systolic blood pressure target of <120 mmHg may be of benefit in those who are not targeting an A1C of <6% and/or that the benefit of intensive blood pressure management is diminished by more intensive glycemia management targeting an A1C of <6%.
Other recent randomized trial data include those from ADVANCE, in which treatment with an angiotensin-converting enzyme inhibitor and a thiazide-type diuretic reduced the rate of death but not the composite macrovascular outcome. However, the ADVANCE trial had no specified targets for the randomized comparison, and the mean systolic blood pressure in the intensive group (135 mmHg) was not as low as the mean systolic blood pressure in the ACCORD standard therapy group (199). A post hoc analysis of blood pressure control in 6,400 patients with diabetes and CAD enrolled in the International Verapamil-Trandolapril (INVEST) trial demonstrated that “tight control” (<130 mmHg) was not associated with improved CV outcomes compared with “usual care” (130–140 mmHg) (200).
Only the ACCORD blood pressure trial formally has examined treatment targets <130 mmHg in diabetes. It is possible that lowering systolic blood pressure from the low-130s to less than 120 mmHg does not further reduce coronary events or death, and that most of the benefit from lowering blood pressure is achieved by targeting a goal of <140 mmHg. However, this has not been formally assessed.
The absence of significant harm, the trends toward benefit in stroke, and the potential heterogeneity with respect to intensive glycemia management suggests that previously recommended targets are reasonable pending further analyses and results. Systolic blood pressure targets more or less stringent than <130 mmHg may be appropriate for individual patients, based on response to therapy, medication tolerance, and individual characteristics, keeping in mind that most analyses have suggested that outcomes are worse if the systolic blood pressure is >140 mmHg.
Treatment strategies
Although there are no well-controlled studies of diet and exercise in the treatment of hypertension in individuals with diabetes, the Dietary Approaches to Stop Hypertension (DASH) study in nondiabetic individuals has shown anti-hypertensive effects similar to pharmacologic monotherapy. Lifestyle therapy consists of reducing sodium intake (to <1,500 mg/day) and excess body weight; increasing consumption of fruits, vegetables (8–10 servings/day), and low-fat dairy products (2–3 servings/day); avoiding excessive alcohol consumption (no more than 2 servings/day in men and no more than 1 serving/day in women) (201); and increasing activity levels (190). These nonpharmacological strategies may also positively affect glycemia and lipid control. Their effects on cardiovascular events have not been established. An initial trial of nonpharmacologic therapy may be reasonable in diabetic individuals with mild hypertension (systolic blood pressure 130–139 mmHg or diastolic blood pressure 80–89 mmHg). If systolic blood pressure is ≥140 mmHg and/or diastolic is ≥90 mmHg at the time of diagnosis, pharmacologic therapy should be initiated along with nonpharmacologic therapy (190).
Lowering of blood pressure with regimens based on a variety of antihypertensive drugs, including ACE inhibitors, ARBs, β-blockers, diuretics, and calcium channel blockers, has been shown to be effective in reducing cardiovascular events. Several studies suggested that ACE inhibitors may be superior to dihydropyridine calcium channel blockers in reducing cardiovascular events (202,–204). However, a variety of other studies have shown no specific advantage to ACE inhibitors as initial treatment of hypertension in the general hypertensive population, but rather an advantage on cardiovascular outcomes of initial therapy with low-dose thiazide diuretics (190,205,206).
In people with diabetes, inhibitors of the renin-angiotensin system (RAS) may have unique advantages for initial or early therapy of hypertension. In a nonhypertension trial of high-risk individuals, including a large subset with diabetes, an ACE inhibitor reduced CVD outcomes (207). In patients with congestive heart failure (CHF), including diabetic subgroups, ARBs have been shown to reduce major CVD outcomes (208,,–211), and in type 2 patients with significant nephropathy, ARBs were superior to calcium channel blockers for reducing heart failure (212). Though evidence for distinct advantages of RAS inhibitors on CVD outcomes in diabetes remains conflicting (195,206), the high CVD risks associated with diabetes, and the high prevalence of undiagnosed CVD, may still favor recommendations for their use as first-line hypertension therapy in people with diabetes (190). Recently, the blood pressure arm of the ADVANCE trial demonstrated that routine administration of a fixed combination of the ACE inhibitor perindopril and the diuretic indapamide significantly reduced combined microvascular and macrovascular outcomes, as well as CVD and total mortality. The improved outcomes could also have been due to lower achieved blood pressure in the perindopril-indapamide arm (199). In addition, the Avoiding Cardiovascular Events through Combination Therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial showed a decrease in morbidity and mortality in those receiving benazapril and amlodipine versus benazapril and hydrochlorothiazide. The compelling benefits of RAS inhibitors in diabetic patients with albuminuria or renal insufficiency provide additional rationale for use of these agents (see VI.B. Nephropathy screening and treatment).
An important caveat is that most patients with hypertension require multi-drug therapy to reach treatment goals, especially diabetic patients whose targets are lower. Many patients will require three or more drugs to reach target goals (190). If blood pressure is refractory to optimal doses of at least three antihypertensive agents of different classifications, one of which should be a diuretic, clinicians should consider an evaluation for secondary forms of hypertension.
During pregnancy in diabetic women with chronic hypertension, target blood pressure goals of systolic blood pressure 110–129 mmHg and diastolic blood pressure 65–79 mmHg are reasonable, as they contribute to long-term maternal health. Lower blood pressure levels may be associated with impaired fetal growth. During pregnancy, treatment with ACE inhibitors and ARBs is contraindicated, since they can cause fetal damage. Antihypertensive drugs known to be effective and safe in pregnancy include methyldopa, labetalol, diltiazem, clonidine, and prazosin. Chronic diuretic use during pregnancy has been associated with restricted maternal plasma volume, which might reduce uteroplacental perfusion (213).
2. Dyslipidemia/lipid management
Recommendations
Screening
In most adult patients, measure fasting lipid profile at least annually. In adults with low-risk lipid values (LDL cholesterol <100 mg/dl, HDL cholesterol >50 mg/dl, and triglycerides <150 mg/dl), lipid assessments may be repeated every 2 years. (E)
Treatment recommendations and goals
Lifestyle modification focusing on the reduction of saturated fat, trans fat, and cholesterol intake; increase of omega-3 fatty acids, viscous fiber, and plant stanols/sterols; weight loss (if indicated); and increased physical activity should be recommended to improve the lipid profile in patients with diabetes. (A)
Statin therapy should be added to lifestyle therapy, regardless of baseline lipid levels, for diabetic patients:
with overt CVD. (A)
without CVD who are over age 40 years and have one or more other CVD risk factors. (A)
For patients at lower risk than above (e.g., without overt CVD and under age 40 years), statin therapy should be considered in addition to lifestyle therapy if LDL cholesterol remains above 100 mg/dl or in those with multiple CVD risk factors. (E)
In individuals without overt CVD, the primary goal is an LDL cholesterol <100 mg/dl (2.6 mmol/l). (A)
In individuals with overt CVD, a lower LDL cholesterol goal of <70 mg/dl (1.8 mmol/l), using a high dose of a statin, is an option. (B)
If drug-treated patients do not reach the above targets on maximal tolerated statin therapy, a reduction in LDL cholesterol of ∼30–40% from baseline is an alternative therapeutic goal. (A)
Triglyceride levels <150 mg/dl (1.7 mmol/l) and HDL cholesterol >40 mg/dl (1.0 mmol/l) in men and >50 mg/dl (1.3 mmol/l) in women, are desirable. However, LDL cholesterol–targeted statin therapy remains the preferred strategy. (C)
If targets are not reached on maximally tolerated doses of statins, combination therapy using statins and other lipid-lowering agents may be considered to achieve lipid targets but has not been evaluated in outcome studies for either CVD outcomes or safety. (E)
Statin therapy is contraindicated in pregnancy. (E)
Evidence for benefits of lipid-lowering therapy
Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of CVD. For the past decade or more, multiple clinical trials demonstrated significant effects of pharmacologic (primarily statin) therapy on CVD outcomes in subjects with CHD and for primary CVD prevention (214). Sub-analyses of diabetic subgroups of larger trials (215,,,–219) and trials specifically in subjects with diabetes (220,221) showed significant primary and secondary prevention of CVD events ± CHD deaths in diabetic populations. As shown in Table 11, and similar to findings in nondiabetic subjects, reduction in “hard” CVD outcomes (CHD death and nonfatal MI) can be more clearly seen in diabetic subjects with high baseline CVD risk (known CVD and/or very high LDL cholesterol levels), but overall the benefits of statin therapy in people with diabetes at moderate or high risk for CVD are convincing.
Study (ref.) . | CVD . | Statin dose and comparator . | Risk reduction (%) . | Relative risk reduction (%) . | Absolute risk reduction (%) . | LDL cholesterol reduction (mg/dl) . | LDL cholesterol reduction (%) . |
---|---|---|---|---|---|---|---|
4S-DM (215) | 2° | Simvastatin 20–40 mg vs. placebo | 85.7 to 43.2 | 50 | 42.5 | 186 to 119 | 36 |
ASPEN 2° (220) | 2° | Atorvastatin 10 mg vs. placebo | 39.5 to 24.5 | 34 | 15 | 112 to 79 | 29 |
HPS-DM (216) | 2° | Simvastatin 40 mg vs. placebo | 43.8 to 36.3 | 17 | 7.5 | 123 to 84 | 31 |
CARE-DM (217) | 2° | Pravastatin 40 mg vs. placebo | 40.8 to 35.4 | 13 | 5.4 | 136 to 99 | 27 |
TNT-DM (218) | 2° | Atorvastatin 80 mg vs. 10 mg | 26.3 to 21.6 | 18 | 4.7 | 99 to 77 | 22 |
HPS-DM (216) | 1° | Simvastatin 40 mg vs. placebo | 17.5 to 11.5 | 34 | 6.0 | 124 to 86 | 31 |
CARDS (221) | 1° | Atorvastatin 10 mg vs. placebo | 11.5 to 7.5 | 35 | 4 | 118 to 71 | 40 |
ASPEN 1° (220) | 1° | Atorvastatin 10 mg vs. placebo | 9.8 to 7.9 | 19 | 1.9 | 114 to 80 | 30 |
ASCOT-DM (219) | 1° | Atorvastatin 10 mg vs. placebo | 11.1 to 10.2 | 8 | 0.9 | 125 to 82 | 34 |
Study (ref.) . | CVD . | Statin dose and comparator . | Risk reduction (%) . | Relative risk reduction (%) . | Absolute risk reduction (%) . | LDL cholesterol reduction (mg/dl) . | LDL cholesterol reduction (%) . |
---|---|---|---|---|---|---|---|
4S-DM (215) | 2° | Simvastatin 20–40 mg vs. placebo | 85.7 to 43.2 | 50 | 42.5 | 186 to 119 | 36 |
ASPEN 2° (220) | 2° | Atorvastatin 10 mg vs. placebo | 39.5 to 24.5 | 34 | 15 | 112 to 79 | 29 |
HPS-DM (216) | 2° | Simvastatin 40 mg vs. placebo | 43.8 to 36.3 | 17 | 7.5 | 123 to 84 | 31 |
CARE-DM (217) | 2° | Pravastatin 40 mg vs. placebo | 40.8 to 35.4 | 13 | 5.4 | 136 to 99 | 27 |
TNT-DM (218) | 2° | Atorvastatin 80 mg vs. 10 mg | 26.3 to 21.6 | 18 | 4.7 | 99 to 77 | 22 |
HPS-DM (216) | 1° | Simvastatin 40 mg vs. placebo | 17.5 to 11.5 | 34 | 6.0 | 124 to 86 | 31 |
CARDS (221) | 1° | Atorvastatin 10 mg vs. placebo | 11.5 to 7.5 | 35 | 4 | 118 to 71 | 40 |
ASPEN 1° (220) | 1° | Atorvastatin 10 mg vs. placebo | 9.8 to 7.9 | 19 | 1.9 | 114 to 80 | 30 |
ASCOT-DM (219) | 1° | Atorvastatin 10 mg vs. placebo | 11.1 to 10.2 | 8 | 0.9 | 125 to 82 | 34 |
Studies were of differing lengths (3.3–5.4 years) and used somewhat different outcomes, but all reported rates of CVD death and nonfatal MI. In this tabulation, results of the statin on 10-year risk of major CVD endpoints (CHD death/nonfatal MI) are listed for comparison between studies. Correlation between 10-year CVD risk of the control group and the absolute risk reduction with statin therapy is highly significant (P = 0.0007). Analyses provided by Craig Williams, PharmD, Oregon Health & Science University, 2007.
Low levels of HDL cholesterol, often associated with elevated triglyceride levels, are the most prevalent pattern of dyslipidemia in persons with type 2 diabetes. However, the evidence base for drugs that target these lipid fractions is significantly less robust than that for statin therapy (222). Nicotinic acid has been shown to reduce CVD outcomes (223), although the study was done in a nondiabetic cohort. Gemfibrozil has been shown to decrease rates of CVD events in subjects without diabetes (224,225) and in the diabetic subgroup in one of the larger trials (224). However, in a large trial specific to diabetic patients, fenofibrate failed to reduce overall cardiovascular outcomes (226).
Dyslipidemia treatment and target lipid levels
For most patients with diabetes, the first priority of dyslipidemia therapy (unless severe hypertriglyceridemia is the immediate issue) is to lower LDL cholesterol to a target goal of <100 mg/dl (2.60 mmol/l) (227). Lifestyle intervention, including MNT, increased physical activity, weight loss, and smoking cessation, may allow some patients to reach lipid goals. Nutrition intervention should be tailored according to each patient's age, type of diabetes, pharmacological treatment, lipid levels, and other medical conditions and should focus on the reduction of saturated fat, cholesterol, and trans unsaturated fat intake and increases in omega-3 fatty acids, viscous fiber (such as in oats, legumes, citrus), and plant stanols/sterols. Glycemic control can also beneficially modify plasma lipid levels, particularly in patients with very high triglycerides and poor glycemic control.
In those with clinical CVD or over age 40 years with other CVD risk factors, pharmacological treatment should be added to lifestyle therapy regardless of baseline lipid levels. Statins are the drugs of choice for LDL cholesterol lowering.
In patients other than those described above, statin treatment should be considered if there is an inadequate LDL cholesterol response to lifestyle modifications and improved glucose control, or if the patient has increased cardiovascular risk (e.g., multiple cardiovascular risk factors or long duration of diabetes). Very little clinical trial evidence exists for type 2 diabetic patients under age 40 years or for type 1 patients of any age. In the Heart Protection Study (lower age limit 40 years), the subgroup of 600 patients with type 1 diabetes had a proportionately similar reduction in risk as patients with type 2 diabetes, although not statistically significant (216). Although the data are not definitive, consideration should be given to similar lipid-lowering goals in type 1 diabetic patients as in type 2 diabetic patients, particularly if they have other cardiovascular risk factors.
Alternative LDL cholesterol goals
Virtually all trials of statins and CVD outcomes tested specific doses of statins against placebo, other doses of statin, or other statins, rather than aiming for specific LDL cholesterol goals (228). As can be seen in Table 11, placebo-controlled trials generally achieved LDL cholesterol reductions of 30–40% from baseline. Hence, LDL cholesterol lowering of this magnitude is an acceptable outcome for patients who cannot reach LDL cholesterol goals due to severe baseline elevations in LDL cholesterol and/or intolerance of maximal, or any, statin doses. Additionally for those with baseline LDL cholesterol minimally above 100 mg/dl, prescribing statin therapy to lower LDL cholesterol about 30–40% from baseline is probably more effective than prescribing just enough to get LDL cholesterol slightly below 100 mg/dl.
Recent clinical trials in high-risk patients, such as those with acute coronary syndromes or previous cardiovascular events (229,–231), have demonstrated that more aggressive therapy with high doses of statins to achieve an LDL cholesterol of <70 mg/dl led to a significant reduction in further events. Therefore, a reduction in LDL cholesterol to a goal of <70 mg/dl is an option in very-high-risk diabetic patients with overt CVD (232).
In individual patients, LDL cholesterol lowering with statins is highly variable, and this variable response is poorly understood (233). Reduction of CVD events with statins correlates very closely with LDL cholesterol lowering (214). When maximally tolerated doses of statins fail to significantly lower LDL cholesterol (<30% reduction from patients baseline), the primary aim of combination therapy should be to achieve additional LDL cholesterol lowering. Niacin, fenofibrate, ezetimibe, and bile acid sequestrants all offer additional LDL cholesterol lowering. The evidence that combination therapy provides a significant increment in CVD risk reduction over statin therapy alone is still elusive.
In 2008, a consensus panel convened by the American Diabetes Association and the American College of Cardiology recommended a greater focus on non-HDL cholesterol and apo lipoprotein B (apo B) in patients who are likely to have small LDL particles, such as people with diabetes (234). The consensus panel suggested that for statin-treated patients in whom the LDL cholesterol goal would be <70 mg/dl (non-HDL cholesterol <100 mg/dl), apo B should be measured and treated to <80 mg/dl. For patients on statins with an LDL cholesterol goal of <100 mg/dl (non-HDL cholesterol <130 mg/dl), apo B should be measured and treated to <90 mg/dl.
Treatment of other lipoprotein fractions or targets
Severe hypertriglyceridemia may warrant immediate therapy of this abnormality with lifestyle and usually pharmacologic therapy (fibric acid derivative, niacin, or fish oil) to reduce the risk of acute pancreatitis. In the absence of severe hypertriglyceridemia, therapy targeting HDL cholesterol or triglycerides has intuitive appeal but lacks the evidence base of statin therapy. If the HDL cholesterol is <40 mg/dl and the LDL cholesterol between 100 and 129 mg/dl, gemfibrozil or niacin might be used, especially if a patient is intolerant to statins. Niacin is the most effective drug for raising HDL cholesterol. It can significantly increase blood glucose at high doses, but recent studies demonstrate that at modest doses (750–2,000 mg/day), significant improvements in LDL cholesterol, HDL cholesterol, and triglyceride levels are accompanied by only modest changes in glucose that are generally amenable to adjustment of diabetes therapy (235,236).
Combination therapy
Combination therapy, with a statin and a fibrate or statin and niacin, may be efficacious for treatment for all three lipid fractions, but this combination is associated with an increased risk for abnormal transaminase levels, myositis, or rhabdomyolysis. The risk of rhabdomyolysis is higher with higher doses of statins and with renal insufficiency and seems to be lower when statins are combined with fenofibrate than gemfibrozil (237). In the recent ACCORD study, the combination of fenofibrate and simvastatin did not reduce the rate of fatal cardiovascular events, nonfatal myocardial infarction, or nonfatal stroke, as compared with simvastatin alone, in patients with type 2 diabetes who were at high risk for CVD. However, prespecified subgroup analyses suggested heterogeneity in treatment effects according to sex, with a benefit for men and possible harm for women, and a possible benefit of combination therapy for patients with both triglyceride level ≥204 mg/dl and HDL cholesterol level ≤34 mg/dl (238). Other ongoing trials may provide much-needed evidence for the effects of combination therapy on cardiovascular outcomes.
Table 12 summarizes common treatment goals for A1C, blood pressure, and HDL cholesterol.
*More or less stringent glycemic goals may be appropriate for individual patients. Goals should be individualized based on: duration of diabetes, age/life expectancy, comorbid conditions, known CVD or advanced microvascular complications, hypoglycemia unawareness, and individual patient considerations.
†Based on patient characteristics and response to therapy, higher or lower systolic blood pressure targets may be appropriate.
‡In individuals with overt CVD, a lower LDL cholesterol goal of <70 mg/dl (1.8 mmol/l), using a high dose of a statin, is an option.
3. Antiplatelet agents
Recommendations
Consider aspirin therapy (75–162 mg/day) as a primary prevention strategy in those with type 1 or type 2 diabetes at increased cardiovascular risk (10-year risk >10%). This includes most men >50 years of age or women >60 years of age who have at least one additional major risk factor (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria). (C)
Aspirin should not be recommended for CVD prevention for adults with diabetes at low CVD risk (10-year CVD risk <5%, such as in men <50 and women <60 years of age with no major additional CVD risk factors), since the potential adverse effects from bleeding likely offset the potential benefits. (C)
In patients in these age-groups with multiple other risk factors (e.g., 10-year risk 5–10%), clinical judgment is required. (E)
Use aspirin therapy (75–162 mg/day) as a secondary prevention strategy in those with diabetes with a history of CVD. (A)
For patients with CVD and documented aspirin allergy, clopidogrel (75 mg/day) should be used. (B)
Combination therapy with ASA (75–162 mg/day) and clopidogrel (75 mg/day) is reasonable for up to a year after an acute coronary syndrome. (B)
ADA and the American Heart Association (AHA) have, in the past, jointly recommended that low-dose aspirin therapy be used as a primary prevention strategy in those with diabetes at increased cardiovascular risk, including those who are over 40 years of age or those with additional risk factors (family history of CVD, hypertension, smoking, dyslipidemia, or albuminuria) (188). These recommendations were derived from several older trials that included small numbers of patients with diabetes.
Aspirin has been shown to be effective in reducing cardiovascular morbidity and mortality in high-risk patients with previous myocardial infarction or stroke (secondary prevention). Its net benefit in primary prevention among patients with no previous cardiovascular events is more controversial, both for patients with and without a history of diabetes (239). Two recent randomized controlled trials of aspirin specifically in patients with diabetes failed to show a significant reduction in CVD end points, raising further questions about the efficacy of aspirin for primary prevention in people with diabetes (240,241).
The Anti-thrombotic Trialists' (ATT) collaborators recently published an individual patient-level meta-analysis of the six large trials of aspirin for primary prevention in the general population. These trials collectively enrolled over 95,000 participants, including almost 4,000 with diabetes. Overall, they found that aspirin reduced the risk of vascular events by 12% (RR 0.88 [95% CI 0.82– 0.94]). The largest reduction was for nonfatal myocardial infarction with little effect on CHD death (RR 0.95 [95% CI 0.78–1.15]) or total stroke. There was some evidence of a difference in aspirin effect by sex. Aspirin significantly reduced CHD events in men but not in women. Conversely, aspirin had no effect on stroke in men but significantly reduced stroke in women. Notably, sex differences in aspirin's effects have not been observed in studies of secondary prevention (239). In the six trials examined by the ATT collaborators, the effects of aspirin on major vascular events were similar for patients with or without diabetes: RR 0.88 (95% CI 0.67–1.15) and 0.87 (0.79–0.96), respectively. The CI was wider for those with diabetes because of their smaller number.
Based on the currently available evidence, aspirin appears to have a modest effect on ischemic vascular events with the absolute decrease in events depending on the underlying CVD risk. The main adverse effects appear to be an increased risk of gastrointestinal bleeding. The excess risk may be as high as 1–5 per 1,000 per year in real-world settings. In adults with CVD risk greater than 1% per year, the number of CVD events prevented will be similar to or greater than the number of episodes of bleeding induced, although these complications do not have equal effects on long-term health (242).
In 2010, a position statement of the ADA, AHA, and American College of Cardiology Foundation (ACCF) updated prior joint recommendations for primary prevention (243). Low dose (75–162 mg/day) aspirin use for primary prevention is reasonable for adults with diabetes and no previous history of vascular disease who are at increased CVD risk (10-year risk of CVD events over 10%) and who are not at increased risk for bleeding. This generally includes most men over age 50 years and women over age 60 years who also have one or more of the following major risk factors: smoking, hypertension, dyslipidemia, family history of premature CVD, and albuminuria.
However, aspirin is no longer recommended for those at low CVD risk (women under age 60 years and men under age 50 years with no major CVD risk factors; 10-year CVD risk under 5%) as the low benefit is likely to be outweighed by the risks of significant bleeding. Clinical judgment should be used for those at intermediate risk (younger patients with one or more risk factors, or older patients with no risk factors; those with 10-year CVD risk of 5–10%) until further research is available. Use of aspirin in patients under the age of 21 years is contraindicated due to the associated risk of Reye's syndrome.
Average daily dosages used in most clinical trials involving patients with diabetes ranged from 50 to 650 mg but were mostly in the range of 100 to 325 mg/day. There is little evidence to support any specific dose, but using the lowest possible dosage may help reduce side effects (244). Although platelets from patients with diabetes have altered function, it is unclear what, if any, impact that finding has on the required dose of aspirin for cardioprotective effects in the patient with diabetes. Many alternate pathways for platelet activation exist that are independent of thromboxane A2 and thus not sensitive to the effects of aspirin (245). Therefore, while “aspirin resistance” appears higher in the diabetic patients when measured by a variety of ex vivo and in vitro methods (platelet aggrenometry, measurement of thromboxane B2), these observations alone are insufficient to empirically recommend higher doses of aspirin be used in the diabetic patient at this time.
Clopidogrel has been demonstrated to reduce CVD events in diabetic individuals (246). It is recommended as adjunctive therapy in the first year after an acute coronary syndrome or as alternative therapy in aspirin-intolerant patients.
4. Smoking cessation
Recommendations
Advise all patients not to smoke. (A)
Include smoking cessation counseling and other forms of treatment as a routine component of diabetes care. (B)
A large body of evidence from epidemiological, case-control, and cohort studies provides convincing documentation of the causal link between cigarette smoking and health risks. Much of the work documenting the impact of smoking on health did not separately discuss results on subsets of individuals with diabetes, but suggests that the identified risks are at least equivalent to those found in the general population. Other studies of individuals with diabetes consistently demonstrate that smokers have a heightened risk of CVD, premature death, and increased rate of microvascular complications of diabetes. Smoking may have a role in the development of type 2 diabetes.
The routine and thorough assessment of tobacco use is important as a means of preventing smoking or encouraging cessation. A number of large randomized clinical trials have demonstrated the efficacy and cost-effectiveness of brief counseling in smoking cessation, including the use of quit lines, in the reduction of tobacco use. For the patient motivated to quit, the addition of pharmacological therapy to counseling is more effective than either treatment alone. Special considerations should include assessment of level of nicotine dependence, which is associated with difficulty in quitting and relapse (247).
5. CHD screening and treatment
Recommendations
Screening
In asymptomatic patients, routine screening for CAD is not recommended, as it does not improve outcomes as long as CVD risk factors are treated. (A)
Treatment
In patients with known CVD, ACE inhibitor (C) and aspirin and statin therapy (A) (if not contraindicated) should be used to reduce the risk of cardiovascular events.
In patients with a prior myocardial infarction, β-blockers should be continued for at least 2 years after the event (B).
Longer term use of β-blockers in the absence of hypertension is reasonable if well tolerated, but data are lacking. (E)
Avoid TZD treatment in patients with symptomatic heart failure. (C)
Metformin may be used in patients with stable CHF if renal function is normal. It should be avoided in unstable or hospitalized patients with CHF. (C)
Screening for CAD is reviewed in a recently updated consensus statement (154). To identify the presence of CAD in diabetic patients without clear or suggestive symptoms, a risk factor–based approach to the initial diagnostic evaluation and subsequent follow-up has intuitive appeal. However, recent studies concluded that using this approach fails to identify which patients with type 2 diabetes will have silent ischemia on screening tests (159,248).
Candidates for cardiac testing include those with 1) typical or atypical cardiac symptoms and 2) an abnormal resting ECG. The screening of asymptomatic patients remains controversial, especially as intensive medical therapy, indicated in diabetic patients at high risk for CVD, has an increasing evidence base for providing equal outcomes to invasive revascularization, including in diabetic patients (249,250). There is also some evidence that silent myocardial ischemia may reverse over time, adding to the controversy concerning aggressive screening strategies (251). Finally, a recent randomized observational trial demonstrated no clinical benefit to routine screening of asymptomatic patients with type 2 diabetes and normal ECGs (252). Despite abnormal myocardial perfusion imaging in more than one in five patients, cardiac outcomes were essentially equal (and very low) in screened versus unscreened patients. Accordingly, the overall effectiveness, especially the cost-effectiveness, of such an indiscriminate screening strategy is now questioned.
Newer noninvasive CAD screening methods, such as computed tomography (CT) and CT angiography have gained in popularity. These tests infer the presence of coronary atherosclerosis by measuring the amount of calcium in coronary arteries and, in some circumstances, by direct visualization of luminal stenoses. Although asymptomatic diabetic patients found to have a higher coronary disease burden have more future cardiac events (253,–255), the role of these tests beyond risk stratification is not clear. Their routine use leads to radiation exposure and may result in unnecessary invasive testing such as coronary angiography and revascularization procedures. The ultimate balance of benefit, cost, and risks of such an approach in asymptomatic patients remains controversial, particularly in the modern setting of aggressive CVD risk factor control.
In all patients with diabetes, cardiovascular risk factors should be assessed at least annually. These risk factors include dyslipidemia, hypertension, smoking, a positive family history of premature coronary disease, and the presence of micro- or macroalbuminuria. Abnormal risk factors should be treated as described elsewhere in these guidelines. Patients at increased CHD risk should receive aspirin and a statin and ACE inhibitor or ARB therapy if hypertensive, unless there are contraindications to a particular drug class. While clear benefit exists for ACE inhibitor and ARB therapy in patients with nephropathy or hypertension, the benefits in patients with CVD in the absence of these conditions is less clear, especially when LDL cholesterol is concomitantly controlled (256,257).
B. Nephropathy screening and treatment
Recommendations
General recommendations
To reduce the risk or slow the progression of nephropathy, optimize glucose control. (A)
To reduce the risk or slow the progression of nephropathy, optimize blood pressure control. (A)
Screening
Perform an annual test to assess urine albumin excretion in type 1 diabetic patients with diabetes duration of 5 years and in all type 2 diabetic patients starting at diagnosis. (E)
Measure serum creatinine at least annually in all adults with diabetes regardless of the degree of urine albumin excretion. The serum creatinine should be used to estimate GFR and stage the level of chronic kidney disease (CKD), if present. (E)
Treatment
In the treatment of the nonpregnant patient with micro- or macroalbuminuria, either ACE inhibitors or ARBs should be used. (A)
While there are no adequate head-to-head comparisons of ACE inhibitors and ARBs, there is clinical trial support for each of the following statements:
In patients with type 1 diabetes, with hypertension and any degree of albuminuria, ACE inhibitors have been shown to delay the progression of nephropathy. (A)
In patients with type 2 diabetes, hypertension, and microalbuminuria, both ACE inhibitors and ARBs have been shown to delay the progression to macroalbuminuria. (A)
In patients with type 2 diabetes, hypertension, macroalbuminuria, and renal insufficiency (serum creatinine >1.5 mg/dl), ARBs have been shown to delay the progression of nephropathy. (A)
If one class is not tolerated, the other should be substituted. (E)
Reduction of protein intake to 0.8–1.0 g · kg body wt−1 · day−1 in individuals with diabetes and the earlier stages of CKD and to 0.8 g · kg body wt−1 · day−1 in the later stages of CKD may improve measures of renal function (urine albumin excretion rate, GFR) and is recommended. (B)
When ACE inhibitors, ARBs, or diuretics are used, monitor serum creatinine and potassium levels for the development of acute kidney disease and hyperkalemia. (E)
Continued monitoring of urine albumin excretion to assess both response to therapy and progression of disease is recommended. (E)
When eGFR <60 ml/min/1.73 m2, evaluate and manage potential complications of CKD. (E)
Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease (heavy proteinuria, active urine sediment, absence of retinopathy, rapid decline in GFR), difficult management issues, or advanced kidney disease. (B)
Diabetic nephropathy occurs in 20–40% of patients with diabetes and is the single leading cause of end-stage renal disease (ESRD). Persistent albuminuria in the range of 30–299 mg/24 h (microalbuminuria) has been shown to be the earliest stage of diabetic nephropathy in type 1 diabetes and a marker for development of nephropathy in type 2 diabetes. Microalbuminuria is also a well-established marker of increased CVD risk (258,259). Patients with microalbuminuria who progress to macroalbuminuria (300 mg/24 h) are likely to progress to ESRD (260,261). However, a number of interventions have been demonstrated to reduce the risk and slow the progression of renal disease.
Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to delay the onset of microalbuminuria and the progression of micro- to macroalbuminuria in patients with type 1 (262,263) and type 2 (55,56) diabetes. The UKPDS provided strong evidence that control of blood pressure can reduce the development of nephropathy (195). In addition, large prospective randomized studies in patients with type 1 diabetes have demonstrated that achievement of lower levels of systolic blood pressure (<140 mmHg) resulting from treatment using ACE inhibitors provides a selective benefit over other antihypertensive drug classes in delaying the progression from micro- to macroalbuminuria and can slow the decline in GFR in patients with macroalbuminuria (264,–266). In type 2 diabetes with hypertension and normoalbuminuria, RAS inhibition has been demonstrated to delay onset of microalbuminuria (267).
In addition, ACE inhibitors have been shown to reduce major CVD outcomes (i.e., myocardial infarction, stroke, death) in patients with diabetes (207), thus further supporting the use of these agents in patients with microalbuminuria, a CVD risk factor. ARBs do not prevent microalbuminuria in normotensive patients with type 1 or type 2 diabetes (268,269); however, ARBs have been shown to reduce the rate of progression from micro- to macroalbuminuria as well as ESRD in patients with type 2 diabetes (270,–272). Some evidence suggests that ARBs have a smaller magnitude of rise in potassium compared with ACE inhibitors in people with nephropathy (273,274). Combinations of drugs that block the renin-angiotensin-aldosterone system (e.g., an ACE inhibitor plus an ARB, a mineralocorticoid antagonist, or a direct renin inhibitor) have been shown to provide additional lowering of albuminuria (275,,–278). However, the long-term effects of such combinations on renal or cardiovascular outcomes have not yet been evaluated in clinical trials, and they are associated with increased risk for hyperkalemia.
Other drugs, such as diuretics, calcium channel blockers, and β-blockers should be used as additional therapy to further lower blood pressure in patients already treated with ACE inhibitors or ARBs (212), or as alternate therapy in the rare individual unable to tolerate ACE inhibitors or ARBs.
Studies in patients with varying stages of nephropathy have shown that protein restriction of dietary protein helps slow the progression of albuminuria, GFR decline, and occurrence of ESRD (279,,–282). Dietary protein restriction should be considered particularly in patients whose nephropathy seems to be progressing despite optimal glucose and blood pressure control and use of ACE inhibitor and/or ARBs (282).
Assessment of albuminuria status and renal function
Screening for microalbuminuria can be performed by measurement of the albumin-to-creatinine ratio in a random spot collection; 24-h or timed collections are more burdensome and add little to prediction or accuracy (283,284). Measurement of a spot urine for albumin only, whether by immunoassay or by using a dipstick test specific for microalbumin, without simultaneously measuring urine creatinine, is somewhat less expensive but susceptible to false-negative and -positive determinations as a result of variation in urine concentration due to hydration and other factors.
Abnormalities of albumin excretion are defined in Table 13. Because of variability in urinary albumin excretion, two of three specimens collected within a 3- to 6-month period should be abnormal before considering a patient to have crossed one of these diagnostic thresholds. Exercise within 24 h, infection, fever, CHF, marked hyperglycemia, and marked hypertension may elevate urinary albumin excretion over baseline values.
Category . | Spot collection (μg/mg creatinine) . |
---|---|
Normal | <30 |
Microalbuminuria | 30–299 |
Macro (clinical)-albuminuria | ≥300 |
Category . | Spot collection (μg/mg creatinine) . |
---|---|
Normal | <30 |
Microalbuminuria | 30–299 |
Macro (clinical)-albuminuria | ≥300 |
Information on presence of abnormal urine albumin excretion in addition to level of GFR may be used to stage CKD. The National Kidney Foundation classification (Table 14) is primarily based on GFR levels and therefore differs from other systems, in which staging is based primarily on urinary albumin excretion (285). Studies have found decreased GFR in the absence of increased urine albumin excretion in a substantial percentage of adults with diabetes (286). Serum creatinine should therefore be measured at least annually in all adults with diabetes, regardless of the degree of urine albumin excretion.
Stage . | Description . | GFR (ml/min per 1.73 m2 body surface area) . |
---|---|---|
1 | Kidney damage* with normal or increased GFR | ≥90 |
2 | Kidney damage* with mildly decreased GFR | 60–89 |
3 | Moderately decreased GFR | 30–59 |
4 | Severely decreased GFR | 15–29 |
5 | Kidney failure | <15 or dialysis |
Stage . | Description . | GFR (ml/min per 1.73 m2 body surface area) . |
---|---|---|
1 | Kidney damage* with normal or increased GFR | ≥90 |
2 | Kidney damage* with mildly decreased GFR | 60–89 |
3 | Moderately decreased GFR | 30–59 |
4 | Severely decreased GFR | 15–29 |
5 | Kidney failure | <15 or dialysis |
*Kidney damage defined as abnormalities on pathologic, urine, blood, or imaging tests. Adapted from ref. 284.
Serum creatinine should be used to estimate GFR and to stage the level of CKD, if present. eGFR is commonly co-reported by laboratories or can be estimated using formulae such as the Modification of Diet in Renal Disease (MDRD) study equation (287). Recent reports have indicated that the MDRD is more accurate for the diagnosis and stratification of CKD in patients with diabetes than the Cockcroft-Gault formula (288). GFR calculators are available at http://www.nkdep.nih.gov.
The role of continued annual quantitative assessment of albumin excretion after diagnosis of microalbuminuria and institution of ACE inhibitor or ARB therapy and blood pressure control is unclear. Continued surveillance can assess both response to therapy and progression of disease. Some suggest that reducing abnormal albuminuria (>30 mg/g) to the normal or near-normal range may improve renal and cardiovascular prognosis, but this approach has not been formally evaluated in prospective trials.
Complications of kidney disease correlate with level of kidney function. When the eGFR is less than 60 ml/min/1.73 m2, screening for complications of CKD is indicated (Table 15). Early vaccination against hepatitis B is indicated in patients likely to progress to end-stage kidney disease.
GFR (ml/min/1.73 m2) . | Recommended . |
---|---|
All patients | Yearly measurement of creatinine, urinary albumin excretion, potassium |
45–60 | Referral to nephrology if possibility for nondiabetic kidney disease exists (duration type 1 diabetes <10 years, heavy proteinuria, abnormal findings on renal ultrasound, resistant hypertension, rapid fall in GFR, or active urinary sediment) |
Consider need for dose adjustment of medications | |
Monitor eGFR every 6 months | |
Monitor electrolytes, bicarbonate, hemoglobin, calcium, phosphorus, parathyroid hormone at least yearly | |
Assure vitamin D sufficiency | |
Consider bone density testing | |
Referral for dietary counselling | |
30–44 | Monitor eGFR every 3 months |
Monitor electrolytes, bicarbonate, calcium, phosphorus, parathyroid hormone, hemoglobin, albumin, weight every 3–6 months | |
Consider need for dose adjustment of medications | |
<30 | Referral to nephrologist |
GFR (ml/min/1.73 m2) . | Recommended . |
---|---|
All patients | Yearly measurement of creatinine, urinary albumin excretion, potassium |
45–60 | Referral to nephrology if possibility for nondiabetic kidney disease exists (duration type 1 diabetes <10 years, heavy proteinuria, abnormal findings on renal ultrasound, resistant hypertension, rapid fall in GFR, or active urinary sediment) |
Consider need for dose adjustment of medications | |
Monitor eGFR every 6 months | |
Monitor electrolytes, bicarbonate, hemoglobin, calcium, phosphorus, parathyroid hormone at least yearly | |
Assure vitamin D sufficiency | |
Consider bone density testing | |
Referral for dietary counselling | |
30–44 | Monitor eGFR every 3 months |
Monitor electrolytes, bicarbonate, calcium, phosphorus, parathyroid hormone, hemoglobin, albumin, weight every 3–6 months | |
Consider need for dose adjustment of medications | |
<30 | Referral to nephrologist |
Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease (heavy proteinuria, active urine sediment, absence of retinopathy, rapid decline in GFR, resistant hypertension), difficult management issues, or advanced kidney disease. The threshold for referral may vary depending on the frequency with which a provider encounters diabetic patients with significant kidney disease. Consultation with a nephrologist when stage 4 CKD develops has been found to reduce cost, improve quality of care, and keep people off dialysis longer (289). However, nonrenal specialists should not delay educating their patients about the progressive nature of diabetic kidney disease; the renal preservation benefits of aggressive treatment of blood pressure, blood glucose, and hyperlipidemia; and the potential need for renal replacement therapy.
C. Retinopathy screening and treatment
Recommendations
General recommendations
To reduce the risk or slow the progression of retinopathy, optimize glycemic control. (A)
To reduce the risk or slow the progression of retinopathy, optimize blood pressure control. (A)
Screening
Adults and children aged 10 years or older with type 1 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist within 5 years after the onset of diabetes. (B)
Patients with type 2 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist shortly after the diagnosis of diabetes. (B)
Subsequent examinations for type 1 and type 2 diabetic patients should be repeated annually by an ophthalmologist or optometrist. Less frequent exams (every 2–3 years) may be considered following one or more normal eye exams. Examinations will be required more frequently if retinopathy is progressing. (B)
High-quality fundus photographs can detect most clinically significant diabetic retinopathy. Interpretation of the images should be performed by a trained eye care provider. While retinal photography may serve as a screening tool for retinopathy, it is not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. (E)
Women with preexisting diabetes who are planning a pregnancy or who have become pregnant should have a comprehensive eye examination and should be counseled on the risk of development and/or progression of diabetic retinopathy. Eye examination should occur in the first trimester with close follow-up throughout pregnancy and for 1 year postpartum. (B)
Treatment
Promptly refer patients with any level of macular edema, severe NPDR, or any PDR to an ophthalmologist who is knowledgeable and experienced in the management and treatment of diabetic retinopathy. (A)
Laser photocoagulation therapy is indicated to reduce the risk of vision loss in patients with high-risk PDR, clinically significant macular edema, and in some cases of severe NPDR. (A)
The presence of retinopathy is not a contraindication to aspirin therapy for cardioprotection, as this therapy does not increase the risk of retinal hemorrhage. (A)
Diabetic retinopathy is a highly specific vascular complication of both type 1 and type 2 diabetes, with prevalence strongly related to the duration of diabetes. Diabetic retinopathy is the most frequent cause of new cases of blindness among adults aged 20–74 years. Glaucoma, cataracts, and other disorders of the eye occur earlier and more frequently in people with diabetes.
In addition to duration of diabetes, other factors that increase the risk of, or are associated with, retinopathy include chronic hyperglycemia (290), the presence of nephropathy (291), and hypertension (292). Intensive diabetes management with the goal of achieving near normoglycemia has been shown in large prospective randomized studies to prevent and/or delay the onset and progression of diabetic retinopathy (47,55, 56,64). Lowering blood pressure has been shown to decrease the progression of retinopathy (195). Several case series and a controlled prospective study suggest that pregnancy in type 1 diabetic patients may aggravate retinopathy (293,294); laser photocoagulation surgery can minimize this risk (294).
One of the main motivations for screening for diabetic retinopathy is the established efficacy of laser photocoagulation surgery in preventing vision loss. Two large trials, the Diabetic Retinopathy Study (DRS) and the Early Treatment Diabetic Retinopathy Study (ETDRS), provide the strongest support for the therapeutic benefits of photocoagulation surgery.
The DRS (295) showed that panretinal photocoagulation surgery reduced the risk of severe vision loss from PDR from 15.9% in untreated eyes to 6.4% in treated eyes, with greatest risk-to-benefit ratio in those with baseline disease (disc neovascularization or vitreous hemorrhage).
The ETDRS (296) established the benefit of focal laser photocoagulation surgery in eyes with macular edema, particularly those with clinically significant macular edema, with reduction of doubling of the visual angle (e.g., 20/50 to 20/100) from 20% in untreated eyes to 8% in treated eyes. The ETDRS also verified the benefits of panretinal photocoagulation for high-risk PDR and in older-onset patients with severe NPDR or less-than-high-risk PDR.
Laser photocoagulation surgery in both trials was beneficial in reducing the risk of further vision loss, but generally not beneficial in reversing already diminished acuity. This preventive effect and the fact that patients with PDR or macular edema may be asymptomatic provide strong support for a screening program to detect diabetic retinopathy.
As retinopathy is estimated to take at least 5 years to develop after the onset of hyperglycemia, patients with type 1 diabetes should have an initial dilated and comprehensive eye examination within 5 years after the onset of diabetes. Patients with type 2 diabetes, who generally have had years of undiagnosed diabetes and who have a significant risk of prevalent DR at time of diabetes diagnosis, should have an initial dilated and comprehensive eye examination soon after diagnosis. Examinations should be performed by an ophthalmologist or optometrist who is knowledgeable and experienced in diagnosing the presence of diabetic retinopathy and is aware of its management. Subsequent examinations for type 1 and type 2 diabetic patients are generally repeated annually. Less-frequent exams (every 2–3 years) may be cost effective after one or more normal eye exams, while examinations will be required more frequently if retinopathy is progressing (297).
The use of retinal photography with remote reading by experts has great potential in areas where qualified eye care professionals are not available, and may also enhance efficiency and reduce costs when the expertise of ophthalmologists can be utilized for more complex examinations and for therapy (298). In-person exams are still necessary when the photos are unacceptable and for follow-up of abnormalities detected. Photos are not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional.
D. Neuropathy screening and treatment (301)
Recommendations
All patients should be screened for distal symmetric polyneuropathy (DPN) at diagnosis and at least annually thereafter, using simple clinical tests. (B)
Electrophysiological testing is rarely needed, except in situations where the clinical features are atypical. (E)
Screening for signs and symptoms of autonomic neuropathy should be instituted at diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes. Special testing is rarely needed and may not affect management or outcomes. (E)
Medications for the relief of specific symptoms related to DPN and autonomic neuropathy are recommended, as they improve the quality of life of the patient. (E)
The diabetic neuropathies are heterogeneous with diverse clinical manifestations. They may be focal or diffuse. Most common among the neuropathies are chronic sensorimotor DPN and autonomic neuropathy. Although DPN is a diagnosis of exclusion, complex investigations to exclude other conditions are rarely needed.
The early recognition and appropriate management of neuropathy in the patient with diabetes is important for a number of reasons: 1) nondiabetic neuropathies may be present in patients with diabetes and may be treatable, 2) a number of treatment options exist for symptomatic diabetic neuropathy, 3) up to 50% of DPN may be asymptomatic and patients are at risk of insensate injury to their feet, and 4) autonomic neuropathy and particularly cardiovascular autonomic neuropathy is associated with substantial morbidity and even mortality. Specific treatment for the underlying nerve damage is currently not available, other than improved glycemic control, which may modestly slow progression (63) but not reverse neuronal loss. Effective symptomatic treatments are available for some manifestations of DPN and autonomic neuropathy.
Diagnosis of neuropathy
Distal symmetric polyneuropathy.
Patients with diabetes should be screened annually for DPN using tests such as pinprick sensation, vibration perception (using a 128-Hz tuning fork), 10-g monofilament pressure sensation at the distal plantar aspect of both great toes and metatarsal joints, and assessment of ankle reflexes. Combinations of more than one test have >87% sensitivity in detecting DPN. Loss of 10-g monofilament perception and reduced vibration perception predict foot ulcers (301). Importantly, in patients with neuropathy, particularly when severe, causes other than diabetes should always be considered, such as neurotoxic mediations, heavy metal poisoning, alcohol abuse, vitamin B12 deficiency (especially in those taking metformin for prolonged periods (302), renal disease, chronic inflammatory demyelinating neuropathy, inherited neuropathies, and vasculitis (303).
Diabetic autonomic neuropathy (304).
The symptoms and signs of autonomic dysfunction should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, and, potentially, autonomic failure in response to hypoglycemia.
Cardiovascular autonomic neuropathy, a CVD risk factor (93), is the most studied and clinically important form of diabetic autonomic neuropathy. Cardiovascular autonomic neuropathy may be indicated by resting tachycardia (>100 bpm) or orthostasis (a fall in systolic blood pressure >20 mmHg upon standing without an appropriate heart rate response); it is also associated with increased cardiac event rates.
Gastrointestinal neuropathies (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, fecal incontinence) are common, and any section of the gastrointestinal tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control or with upper gastrointestinal symptoms without other identified cause. Evaluation of solid-phase gastric emptying using double-isotope scintigraphy may be done if symptoms are suggestive, but test results often correlate poorly with symptoms. Constipation is the most common lower-gastrointestinal symptom but can alternate with episodes of diarrhea.
Diabetic autonomic neuropathy is also associated with genitourinary tract disturbances. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation. Evaluation of bladder dysfunction should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder.
Symptomatic treatments
DPN.
The first step in management of patients with DPN should be to aim for stable and optimal glycemic control. Although controlled trial evidence is lacking, several observational studies suggest that neuropathic symptoms improve not only with optimization of control, but also with the avoidance of extreme blood glucose fluctuations. Patients with painful DPN may benefit from pharmacological treatment of their symptoms: many agents have efficacy confirmed in published randomized controlled trials, several of which are Food and Drug Administration (FDA)-approved for the management of painful DPN.
Treatment of autonomic neuropathy
Gastroparesis symptoms may improve with dietary changes and prokinetic agents such as metoclopramide or erythromycin. Treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intraurethral prostaglandins, vacuum devices, or penile prostheses. Interventions for other manifestations of autonomic neuropathy are described in the ADA statement on neuropathy (301). As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process, but may have a positive impact on the quality of life of the patient.
E. Foot care
Recommendations
For all patients with diabetes, perform an annual comprehensive foot examination to identify risk factors predictive of ulcers and amputations. The foot examination should include inspection, assessment of foot pulses, and testing for loss of protective sensation (10-g monofilament plus testing any one of: vibration using 128-Hz tuning fork, pinprick sensation, ankle reflexes, or vibration perception threshold). (B)
Provide general foot self-care education to all patients with diabetes. (B)
A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet, especially those with a history of prior ulcer or amputation. (B)
Refer patients who smoke, have loss of protective sensation and structural abnormalities, or have history of prior lower-extremity complications to foot care specialists for ongoing preventive care and life-long surveillance. (C)
Initial screening for peripheral arterial disease (PAD) should include a history for claudication and an assessment of the pedal pulses. Consider obtaining an ankle-brachial index (ABI), as many patients with PAD are asymptomatic. (C)
Refer patients with significant claudication or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options. (C)
Amputation and foot ulceration, consequences of diabetic neuropathy and/or PAD, are common and major causes of morbidity and disability in people with diabetes. Early recognition and management of risk factors can prevent or delay adverse outcomes.
The risk of ulcers or amputations is increased in people who have the following risk factors:
Previous amputation
Past foot ulcer history
Peripheral neuropathy
Foot deformity
Peripheral vascular disease
Visual impairment
Diabetic nephropathy (especially patients on dialysis)
Poor glycemic control
Cigarette smoking
Many studies have been published proposing a range of tests that might usefully identify patients at risk of foot ulceration, creating confusion among practitioners as to which screening tests should be adopted in clinical practice. An ADA task force was therefore assembled in 2008 to concisely summarize recent literature in this area and then recommend what should be included in the comprehensive foot exam for adult patients with diabetes. Their recommendations are summarized below, but clinicians should refer to the task force report (305) for further details and practical descriptions of how to perform components of the comprehensive foot examination.
At least annually, all adults with diabetes should undergo a comprehensive foot examination to identify high risk conditions. Clinicians should ask about history of previous foot ulceration or amputation, neuropathic or peripheral vascular symptoms, impaired vision, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be done in a well lit room. Vascular assessment would include inspection and assessment of pedal pulses.
The neurologic exam recommended is designed to identify loss of protective sensation (LOPS) rather than early neuropathy. The clinical examination to identify LOPS is simple and requires no expensive equipment. Five simple clinical tests (use of a 10-g monofilament, vibration testing using a 128-Hz tuning fork, tests of pinprick sensation, ankle reflex assessment, and testing vibration perception threshold with a biothesiometer), each with evidence from well-conducted prospective clinical cohort studies, are considered useful in the diagnosis of LOPS in the diabetic foot. The task force agrees that any of the five tests listed could be used by clinicians to identify LOPS, although ideally two of these should be regularly performed during the screening exam—normally the 10-g monofilament and one other test. One or more abnormal tests would suggest LOPS, while at least two normal tests (and no abnormal test) would rule out LOPS. The last test listed, vibration assessment using a biothesiometer or similar instrument, is widely used in the U.S.; however, identification of the patient with LOPS can easily be carried out without this or other expensive equipment.
Initial screening for PAD should include a history for claudication and an assessment of the pedal pulses. A diagnostic ABI should be performed in any patient with symptoms of PAD. Due to the high estimated prevalence of PAD in patients with diabetes and the fact that many patients with PAD are asymptomatic, an ADA consensus statement on PAD (306) suggested that a screening ABI be performed in patients over 50 years of age and be considered in patients under 50 years of age who have other PAD risk factors (e.g., smoking, hypertension, hyperlipidemia, or duration of diabetes >10 years). Refer patients with significant symptoms or a positive ABI for further vascular assessment and consider exercise, medications, and surgical options (306).
Patients with diabetes and high-risk foot conditions should be educated regarding their risk factors and appropriate management. Patients at risk should understand the implications of the LOPS, the importance of foot monitoring on a daily basis, the proper care of the foot, including nail and skin care, and the selection of appropriate footwear. Patients with LOPS should be educated on ways to substitute other sensory modalities (hand palpation, visual inspection) for surveillance of early foot problems. Patients' understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist in their care.
People with neuropathy or evidence of increased plantar pressure (e.g., erythema, warmth, callus, or measured pressure) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. Callus can be debrided with a scalpel by a foot care specialist or other health professional with experience and training in foot care. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra-wide or -depth shoes. People with extreme bony deformities (e.g., Charcot foot) who cannot be accommodated with commercial therapeutic footwear may need custom-molded shoes.
Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes.
VII. DIABETES CARE IN SPECIFIC POPULATIONS
A. Children and adolescents
1. Type 1 diabetes
Three-quarters of all cases of type 1 diabetes are diagnosed in individuals <18 years of age. It is appropriate to consider the unique aspects of care and management of children and adolescents with type 1 diabetes. Children with diabetes differ from adults in many respects, including changes in insulin sensitivity related to sexual maturity and physical growth, ability to provide self-care, supervision in child care and school, and unique neurological vulnerability to hypoglycemia and DKA. Attention to such issues as family dynamics, developmental stages, and physiological differences related to sexual maturity are all essential in developing and implementing an optimal diabetes regimen. Although recommendations for children and adolescents are less likely to be based on clinical trial evidence, expert opinion and a review of available and relevant experimental data are summarized in the ADA statement on care of children and adolescents with type 1 diabetes (307).
Ideally, the care of a child or adolescent with type 1 diabetes should be provided by a multidisciplinary team of specialists trained in the care of children with pediatric diabetes. At the very least, education of the child and family should be provided by health care providers trained and experienced in childhood diabetes and sensitive to the challenges posed by diabetes in this age-group. At the time of initial diagnosis, it is essential that diabetes education be provided in a timely fashion, with the expectation that the balance between adult supervision and self-care should be defined by, and will evolve according to, physical, psychological, and emotional maturity. MNT and psychological support should be provided at diagnosis, and regularly thereafter, by individuals experienced with the nutritional and behavioral needs of the growing child and family.
a. Glycemic control
Recommendations
Consider age when setting glycemic goals in children and adolescents with type 1 diabetes. (E)
While current standards for diabetes management reflect the need to maintain glucose control as near to normal as safely possible, special consideration should be given to the unique risks of hypoglycemia in young children. Glycemic goals may need to be modified to take into account the fact that most children <6 or 7 years of age have a form of “hypoglycemic unawareness,” including immaturity of and a relative inability to recognize and respond to hypoglycemic symptoms, placing them at greater risk for severe hypoglycemia and its sequelae. In addition, and unlike the case in adults, young children under the age of 5 years may be at risk for permanent cognitive impairment after episodes of severe hypoglycemia (308,–310). Furthermore, findings from the DCCT demonstrated that near-normalization of blood glucose levels was more difficult to achieve in adolescents than adults. Nevertheless, the increased frequency of use of basal-bolus regimens and insulin pumps in youth from infancy through adolescence has been associated with more children reaching ADA blood glucose targets (311,312) in those families in which both parents and the child with diabetes participate jointly to perform the required diabetes-related tasks. Furthermore, recent studies documenting neurocognitive sequelae of hyperglycemia in children provide another compelling motivation for achieving glycemic targets (313,314).
In selecting glycemic goals, the benefits on long-term health outcomes of achieving a lower A1C should be balanced against the risks of hypoglycemia and the developmental burdens of intensive regimens in children and youth. Age-specific glycemic and A1C goals are presented in Table 16.
. | Plasma blood glucose goal range (mg/dl) . | A1C (%) . | Rationale . | |
---|---|---|---|---|
Before meals . | Bedtime/overnight . | |||
Toddlers and preschoolers (0–6 years) | 100–180 | 110–200 | <8.5 |
|
School age (6–12 years) | 90–180 | 100–180 | <8 |
|
Adolescents and young adults (13–19 years) | 90–130 | 90–150 | <7.5 |
|
Key concepts in setting glycemic goals
|
. | Plasma blood glucose goal range (mg/dl) . | A1C (%) . | Rationale . | |
---|---|---|---|---|
Before meals . | Bedtime/overnight . | |||
Toddlers and preschoolers (0–6 years) | 100–180 | 110–200 | <8.5 |
|
School age (6–12 years) | 90–180 | 100–180 | <8 |
|
Adolescents and young adults (13–19 years) | 90–130 | 90–150 | <7.5 |
|
Key concepts in setting glycemic goals
|
b. Screening and management of chronic complications in children and adolescents with type 1 diabetes
i. Nephropathy
Recommendations
Annual screening for microalbuminuria, with a random spot urine sample for albumin-to-creatinine (ACR) ratio, should be considered once the child is 10 years of age and has had diabetes for 5 years. (E)
Confirmed, persistently elevated ACR on two additional urine specimens from different days should be treated with an ACE inhibitor, titrated to normalization of albumin excretion if possible. (E)
ii. Hypertension
Recommendations
Treatment of high-normal blood pressure (systolic or diastolic blood pressure consistently above the 90th percentile for age, sex, and height) should include dietary intervention and exercise aimed at weight control and increased physical activity, if appropriate. If target blood pressure is not reached with 3–6 months of lifestyle intervention, pharmacologic treatment should be considered. (E)
Pharmacologic treatment of hypertension (systolic or diastolic blood pressure consistently above the 95th percentile for age, sex, and height or consistently greater than 130/80 mmHg, if 95% exceeds that value) should be initiated as soon as the diagnosis is confirmed. (E)
ACE inhibitors should be considered for the initial treatment of hypertension, following appropriate reproductive counseling due to its potential teratogenic effects. (E)
The goal of treatment is a blood pressure consistently <130/80 or below the 90th percentile for age, sex, and height, whichever is lower. (E)
It is important that blood pressure measurements are determined correctly, using the appropriate size cuff, and with the child seated and relaxed. Hypertension should be confirmed on at least three separate days. Normal blood pressure levels for age, sex, and height and appropriate methods for determinations are available online at www.nhlbi.nih.gov/health/prof/heart/hbp/hbp_ped.pdf.
iii. Dyslipidemia
Recommendations
Screening
If there is a family history of hypercholesterolemia (total cholesterol >240 mg/dl) or a cardiovascular event before age 55 years, or if family history is unknown, then a fasting lipid profile should be performed on children >2 years of age soon after diagnosis (after glucose control has been established). If family history is not of concern, then the first lipid screening should be considered at puberty (≥10 years). All children diagnosed with diabetes at or after puberty should have a fasting lipid profile performed soon after diagnosis (after glucose control has been established). (E)
For both age-groups, if lipids are abnormal, annual monitoring is recommended. If LDL cholesterol values are within the accepted risk levels (<100 mg/dl [2.6 mmol/l]), a lipid profile should be repeated every 5 years. (E)
Treatment
Initial therapy should consist of optimization of glucose control and MNT using a Step 2 AHA diet aimed at a decrease in the amount of saturated fat in the diet. (E)
After the age of 10 years, the addition of a statin in patients who, after MNT and lifestyle changes, have LDL cholesterol >160 mg/dl (4.1 mmol/l), or LDL cholesterol >130 mg/dl (3.4 mmol/l) and one or more CVD risk factors, is reasonable. (E)
The goal of therapy is an LDL cholesterol value <100 mg/dl (2.6 mmol/l). (E)
People diagnosed with type 1 diabetes in childhood have a high risk of early subclinical (315,–317) and clinical (318) CVD. Although intervention data are lacking, the AHA categorizes children with type 1 diabetes in the highest tier for cardiovascular risk and recommends both lifestyle and pharmacologic treatment for those with elevated LDL cholesterol levels (319,320). Initial therapy should be with a Step 2 AHA diet, which restricts saturated fat to 7% of total calories and restricts dietary cholesterol to 200 mg/day. Data from randomized clinical trials in children as young as 7 months of age indicate that this diet is safe and does not interfere with normal growth and development (321,322).
Neither long-term safety nor cardiovascular outcome efficacy of statin therapy has been established for children. However, recent studies have shown short-term safety equivalent to that seen in adults, and efficacy in lowering LDL cholesterol levels, improving endothelial function, and causing regression of carotid intimal thickening (323,–325). No statin is approved for use under the age of 10 years, and statin treatment should generally not be used in children with type 1 diabetes prior to this age.
iv. Retinopathy
Recommendations
The first ophthalmologic examination should be obtained once the child is 10 years of age and has had diabetes for 3–5 years. (E)
After the initial examination, annual routine follow-up is generally recommended. Less frequent examinations may be acceptable on the advice of an eye care professional. (E)
Although retinopathy most commonly occurs after the onset of puberty and after 5–10 years of diabetes duration, it has been reported in prepubertal children and with diabetes duration of only 1–2 years. Referrals should be made to eye care professionals with expertise in diabetic retinopathy, an understanding of the risk for retinopathy in the pediatric population, and experience in counseling the pediatric patient and family on the importance of early prevention/intervention.
v. Celiac disease
Recommendations
Children with type 1 diabetes should be screened for celiac disease by measuring tissue transglutaminase or anti-endomysial antibodies, with documentation of normal total serum IgA levels, soon after the diagnosis of diabetes. (E)
Testing should be repeated in children with growth failure, failure to gain weight, weight loss, diarrhea, flatulence, abdominal pain, or signs of malabsorption, or in children with frequent unexplained hypoglycemia or deterioration in glycemic control. (E)
Children with positive antibodies should be referred to a gastroenterologist for evaluation with endoscopy and biopsy. (E)
Children with biopsy-confirmed celiac disease should be placed on a gluten-free diet and have consultation with a dietitian experienced in managing both diabetes and celiac disease. (E)
Celiac disease is an immune-mediated disorder that occurs with increased frequency in patients with type 1 diabetes (1–16% of individuals compared with 0.3–1% in the general population) (326,327). Symptoms of celiac disease include diarrhea, weight loss or poor weight gain, growth failure, abdominal pain, chronic fatigue, malnutrition due to malabsorption, other gastrointestinal problems, and unexplained hypoglycemia or erratic blood glucose concentrations.
The advent of routine periodic screening has led to the diagnosis of celiac disease in asymptomatic children. While several studies have documented short-term benefits of gluten restriction on growth and bone mineral density in asymptomatic children diagnosed with celiac disease by routine screening, there is little literature available regarding the long-term benefit of gluten-free diets in this population.
vi. Hypothyroidism
Recommendations
Children with type 1 diabetes should be screened for thyroid peroxidase and thyroglobulin antibodies at diagnosis. (E)
TSH concentrations should be measured after metabolic control has been established. If normal, they should be re-checked every 1–2 years, or if the patient develops symptoms of thyroid dysfunction, thyromegaly, or an abnormal growth rate. (E)
Auto-immune thyroid disease is the most common autoimmune disorder associated with diabetes, occurring in 17–30% of patients with type 1 diabetes (328). The presence of thyroid auto-antibodies is predictive of thyroid dysfunction, generally hypothyroidism but less commonly hyperthyroidism (329). Subclinical hypothyroidism may be associated with increased risk of symptomatic hypoglycemia (330) and with reduced linear growth (331). Hyperthyroidism alters glucose metabolism, potentially resulting in deterioration of metabolic control.
c. Self-management
No matter how sound the medical regimen, it can only be as good as the ability of the family and/or individual to implement it. Family involvement in diabetes remains an important component of optimal diabetes management throughout childhood and into adolescence. Health care providers who care for children and adolescents, therefore, must be capable of evaluating the behavioral, emotional, and psychosocial factors that interfere with implementation and then must work with the individual and family to resolve problems that occur and/or to modify goals as appropriate.
d. School and day care
Because a sizable portion of a child's day is spent in school, close communication with and cooperation of school or day care personnel is essential for optimal diabetes management, safety, and maximal academic opportunities. See the ADA position statement on Diabetes Care in the School and Day Care Setting (332) for further discussion.
e. Transition from pediatric to adult care
As they approach the young adult years, older adolescents are at increasing physical, behavioral, and other risks (333,334). As they leave both their home and their pediatric diabetes care providers, these older teens may become disengaged from the health care system, leading to lapses in medical care and deterioration in glycemic control (335). Though scientific evidence is limited to date, it is clear that early and ongoing attention be given to comprehensive and coordinated planning for seamless transition of all youth from pediatric to adult health care (336,337). The National Diabetes Education Program (NDEP) has materials available to facilitate this transition process (http://ndep.nih.gov/transitions/).
2. Type 2 diabetes
The incidence of type 2 diabetes in adolescents is increasing, especially in ethnic minority populations (21). Distinction between type 1 and type 2 diabetes in children can be difficult, since the prevalence of overweight in children continues to rise and since autoantigens and ketosis may be present in a substantial number of patients with features of type 2 diabetes (including obesity and acanthosis nigricans). Such a distinction at the time of diagnosis is critical since treatment regimens, educational approaches, and dietary counsel will differ markedly between the two diagnoses.
Type 2 diabetes has a significant prevalence of comorbidities already present at the time of diagnosis (338). It is recommended that blood pressure measurement, a fasting lipid profile, microalbuminuria assessment, and dilated eye examination be performed at the time of diagnosis. Thereafter, screening guidelines and treatment recommendations for hypertension, dyslipidemia, microalbuminuria, and retinopathy in youth with type 2 diabetes are similar to those for youth with type 1 diabetes. Additional problems that may need to be addressed include polycystic ovary disease and the various comorbidities associated with pediatric obesity such as sleep apnea, hepatic steatosis, orthopedic complications, and psychosocial concerns. The ADA consensus statement on this subject (23) provides guidance on the prevention, screening, and treatment of type 2 diabetes and its comorbidities in young people.
3. Monogenic diabetes syndromes
Monogenic forms of diabetes (neonatal diabetes or maturity-onset diabetes of the young) represent a small fraction of children with diabetes (<5%), but the ready availability of commercial genetic testing is now enabling a true genetic diagnosis with increasing frequency. It is important to correctly diagnose one of the monogenic forms of diabetes, as these children may be incorrectly diagnosed with type 1 or type 2 diabetes, leading to nonoptimal treatment regimens and delays in diagnosing other family members.
The diagnosis of monogenic diabetes should be considered in the following settings: diabetes diagnosed within the first 6 months of life; in children with strong family history of diabetes but without typical features of type 2 diabetes (nonobese, low-risk ethnic group); in children with mild fasting hyperglycemia (100–150 mg/dl [5.5–8.5 mmol]), especially if young and nonobese; and in children with diabetes but with negative auto-antibodies without signs of obesity or insulin resistance. A recent international consensus document discusses in further detail the diagnosis and management of children with monogenic forms of diabetes (339).
B. Preconception care
Recommendations
A1C levels should be as close to normal as possible (<7%) in an individual patient before conception is attempted. (B)
Starting at puberty, preconception counseling should be incorporated in the routine diabetes clinic visit for all women of child-bearing potential. (C)
Women with diabetes who are contemplating pregnancy should be evaluated and, if indicated, treated for diabetic retinopathy, nephropathy, neuropathy, and CVD. (E)
Medications used by such women should be evaluated prior to conception, since drugs commonly used to treat diabetes and its complications may be contraindicated or not recommended in pregnancy, including statins, ACE inhibitors, ARBs, and most noninsulin therapies. (E)
Since many pregnancies are unplanned, consider the potential risks and benefits of medications that are contraindicated in pregnancy in all women of childbearing potential, and counsel women using such medications accordingly. (E)
Major congenital malformations remain the leading cause of mortality and serious morbidity in infants of mothers with type 1 and type 2 diabetes. Observational studies indicate that the risk of malformations increases continuously with increasing maternal glycemia during the first 6–8 weeks of gestation, as defined by first-trimester A1C concentrations. There is no threshold for A1C values below which risk disappears entirely. However, malformation rates above the 1–2% background rate of nondiabetic pregnancies appear to be limited to pregnancies in which first-trimester A1C concentrations are >1% above the normal range for a nondiabetic pregnant woman.
Preconception care of diabetes appears to reduce the risk of congenital malformations. Five nonrandomized studies compared rates of major malformations in infants between women who participated in preconception diabetes care programs and women who initiated intensive diabetes management after they were already pregnant. The preconception care programs were multidisciplinary and designed to train patients in diabetes self-management with diet, intensified insulin therapy, and SMBG. Goals were set to achieve normal blood glucose concentrations, and >80% of subjects achieved normal A1C concentrations before they became pregnant. In all five studies, the incidence of major congenital malformations in women who participated in preconception care (range 1.0–1.7% of infants) was much lower than the incidence in women who did not participate (range 1.4–10.9% of infants) (78). One limitation of these studies is that participation in preconception care was self-selected rather than randomized. Thus, it is impossible to be certain that the lower malformation rates resulted fully from improved diabetes care. Nonetheless, the evidence supports the concept that malformations can be reduced or prevented by careful management of diabetes before pregnancy.
Planned pregnancies greatly facilitate preconception diabetes care. Unfortunately, nearly two-thirds of pregnancies in women with diabetes are unplanned, leading to a persistent excess of malformations in infants of diabetic mothers. To minimize the occurrence of these devastating malformations, standard care for all women with diabetes who have child-bearing potential, beginning at the onset of puberty or at diagnosis, should include 1) education about the risk of malformations associated with unplanned pregnancies and poor metabolic control; and 2) use of effective contraception at all times, unless the patient has good metabolic control and is actively trying to conceive.
Women contemplating pregnancy need to be seen frequently by a multidisciplinary team experienced in the management of diabetes before and during pregnancy. The goals of preconception care are to 1) involve and empower the patient in the management of her diabetes, 2) achieve the lowest A1C test results possible without excessive hypoglycemia, 3) assure effective contraception until stable and acceptable glycemia is achieved, and 4) identify, evaluate, and treat long-term diabetes complications such as retinopathy, nephropathy, neuropathy, hypertension, and CHD (78).
Among the drugs commonly used in the treatment of patients with diabetes, a number may be relatively or absolutely contraindicated during pregnancy. Statins are category X (contraindicated for use in pregnancy) and should be discontinued before conception, as should ACE inhibitors (340). ARBs are category C (risk cannot be ruled out) in the first trimester but category D (positive evidence of risk) in later pregnancy and should generally be discontinued before pregnancy. Since many pregnancies are unplanned, health care professionals caring for any woman of childbearing potential should consider the potential risks and benefits of medications that are contraindicated in pregnancy. Women using medications such as statins or ACE inhibitors need ongoing family planning counseling. Among the oral antidiabetic agents, metformin and acarbose are classified as category B (no evidence of risk in humans) and all others as category C. Potential risks and benefits of oral antidiabetic agents in the preconception period must be carefully weighed, recognizing that data are insufficient to establish the safety of these agents in pregnancy.
C. Older adults
Recommendations
Older adults who are functional, cognitively intact, and have significant life expectancy should receive diabetes care using goals developed for younger adults. (E)
Glycemic goals for older adults not meeting the above criteria may be relaxed using individual criteria, but hyperglycemia leading to symptoms or risk of acute hyperglycemic complications should be avoided in all patients. (E)
Other cardiovascular risk factors should be treated in older adults with consideration of the time frame of benefit and the individual patient. Treatment of hypertension is indicated in virtually all older adults, and lipid and aspirin therapy may benefit those with life expectancy at least equal to the time frame of primary or secondary prevention trials. (E)
Screening for diabetes complications should be individualized in older adults, but particular attention should be paid to complications that would lead to functional impairment. (E)
Diabetes is an important health condition for the aging population; at least 20% of patients over the age of 65 years have diabetes, and this number can be expected to grow rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, and coexisting illnesses such as hypertension, CHD, and stroke than those without diabetes. Older adults with diabetes are also at greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, depression, cognitive impairment, urinary incontinence, injurious falls, and persistent pain.
The American Geriatric Society's guidelines for improving the care of the older person with diabetes (342) have influenced the following discussion and recommendations. The care of older adults with diabetes is complicated by their clinical and functional heterogeneity. Some older individuals developed diabetes years earlier and may have significant complications; others who are newly diagnosed may have had years of undiagnosed diabetes with resultant complications or may have few complications from the disease. Some older adults with diabetes are frail and have other underlying chronic conditions, substantial diabetes-related comorbidity, or limited physical or cognitive functioning. Other older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable for this population, but often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals.
There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management and who are active, have good cognitive function, and are willing should be provided with the needed education and skills to do so and be treated using the goals for younger adults with diabetes.
For patients with advanced diabetes complications, life-limiting comorbid illness, or substantial cognitive or functional impairment, it is reasonable to set less-intensive glycemic target goals. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences.
Although control of hyperglycemia may be important in older individuals with diabetes, greater reductions in morbidity and mortality may result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in the elderly (343,344). There is less evidence for lipid-lowering and aspirin therapy, although the benefits of these interventions for primary and secondary prevention are likely to apply to older adults whose life expectancies equal or exceed the time frames seen in clinical trials.
Special care is required in prescribing and monitoring pharmacologic therapy in older adults. Metformin is often contraindicated because of renal insufficiency or significant heart failure. TZDs can cause fluid retention, which may exacerbate or lead to heart failure. They are contraindicated in patients with CHF (New York Heart Association class III and class IV) and if used at all should be used very cautiously in those with, or at risk for, milder degrees of CHF. Sulfonylureas, other insulin secretagogues, and insulin can cause hypoglycemia. Insulin use requires that patients or caregivers have good visual and motor skills and cognitive ability. Drugs should be started at the lowest dose and titrated up gradually until targets are reached or side effects develop.
Screening for diabetes complications in older adults also should be individualized. Particular attention should be paid to complications that can develop over short periods of time and/or that would significantly impair functional status, such as visual and lower-extremity complications.
D. Cystic fibrosis–related diabetes
Cystic fibrosis–related diabetes (CFRD) is the most common comorbidity in persons with CF, occurring in about 20% of adolescents and 40–50% of adults. The additional diagnosis of diabetes in this population is associated with worse nutritional status, more-severe inflammatory lung disease, and greater mortality from respiratory failure. For reasons that are not well understood, women with CFRD are particularly vulnerable to excess morbidity and mortality. Insulin insufficiency related to partial fibrotic destruction of the islet mass is the primary defect in CFRD. Genetically determined function of the remaining β-cells and insulin resistance associated with infection and inflammation may also play a role. Encouraging new data suggest that early detection and aggressive insulin therapy have narrowed the gap in mortality between CF patients with and without diabetes, and have eliminated the sex difference in mortality.
A consensus conference on CFRD was co-sponsored in 2009 by the American Diabetes Association, the Cystic Fibrosis Foundation, and the Pediatric Endocrine Society. Recommendations for the clinical management of CFRD can be found in an ADA position statement (344a).
VIII. DIABETES CARE IN SPECIFIC SETTINGS
A. Diabetes care in the hospital
Recommendations
All patients with diabetes admitted to the hospital should have their diabetes clearly identified in the medical record. (E)
All patients with diabetes should have an order for blood glucose monitoring, with results available to all members of the health care team. (E)
Goals for blood glucose levels:
Critically ill patients: Insulin therapy should be initiated for treatment of persistent hyperglycemia starting at a threshold of no greater than 180 mg/dl (10 mmol/l). Once insulin therapy is started, a glucose range of 140–180 mg/dl (7.8–10 mmol/l) is recommended for the majority of critically ill patients. (A)
More stringent goals, such as 110–140 mg/dl (6.1–7.8 mmol/l) may be appropriate for selected patients, as long as this can be achieved without significant hypoglycemia. (C)
Critically ill patients require an intravenous insulin protocol that has demonstrated efficacy and safety in achieving the desired glucose range without increasing risk for severe hypoglycemia. (E)
Non–critically ill patients: There is no clear evidence for specific blood glucose goals. If treated with insulin, the premeal blood glucose target should generally be <140 mg/dl (7.8 mmol/l) with random blood glucose <180 mg/dl (10.0 mmol/l), provided these targets can be safely achieved. More stringent targets may be appropriate in stable patients with previous tight glycemic control. Less stringent targets may be appropriate in those with severe comorbidites. (E)
Scheduled subcutaneous insulin with basal, nutritional, and correction components is the preferred method for achieving and maintaining glucose control in noncritically ill patients. (C) Using correction dose or “supplemental” insulin to correct premeal hyperglycemia in addition to scheduled prandial and basal insulin is recommended. (E)
Glucose monitoring should be initiated in any patient not known to be diabetic who receives therapy associated with high risk for hyperglycemia, including high-dose glucocorticoid therapy, initiation of enteral or parenteral nutrition, or other medications such as octreotide or immunosuppressive medications. (B) If hyperglycemia is documented and persistent, treatment is necessary. Such patients should be treated to the same glycemic goals as patients with known diabetes. (E)
A hypoglycemia management protocol should be adopted and implemented by each hospital or hospital system. A plan for treating hypoglycemia should be established for each patient. Episodes of hypoglycemia in the hospital should be documented in the medial record and tracked. (E)
All patients with diabetes admitted to the hospital should have an A1C obtained if the result of testing in the previous 2–3 months is not available. (E)
Patients with hyperglycemia in the hospital who do not have a diagnosis of diabetes should have appropriate plans for follow-up testing and care documented at discharge. (E)
Hyperglycemia in the hospital is extensively reviewed in an ADA technical review (345). A recent updated consensus statement by the American Association of Clinical Endocrinologists (AACE) and the ADA (346) forms the basis for the discussion and guidelines in this section.
The literature on hospitalized patients with hyperglycemia typically describes three categories:
Medical history of diabetes: diabetes has been previously diagnosed and acknowledged by the patient's treating physician.
Unrecognized diabetes: hyperglycemia (fasting blood glucose ≥126 mg/dl or random blood glucose ≥200 mg/dl) occurring during hospitalization and confirmed as diabetes after hospitalization by standard diagnostic criteria but unrecognized as diabetes by the treating physician during hospitalization.
Hospital-related hyperglycemia: hyperglycemia (fasting blood glucose ≥126 mg/dl or random blood glucose ≥200 mg/dl) occurring during the hospitalization that reverts to normal after hospital discharge.
The management of hyperglycemia in the hospital has often been considered secondary in importance to the condition that prompted admission (345). However, a body of literature now supports targeted glucose control in the hospital setting for potential improved clinical outcomes. Hyperglycemia in the hospital may result from stress, decompensation of type 1 or type 2 or other forms of diabetes, and/or may be iatrogenic due to withholding of anti-hyperglycemic medications or administration of hyperglycemia-provoking agents such as glucocorticoids or vasopressors.
People with diabetes are more likely to be hospitalized and to have longer lengths of stay than those without diabetes. A recent survey estimated that 22% of all hospital inpatient days were incurred by people with diabetes and that hospital inpatient care accounted for half of the $174 billion total U.S. medical expenditures for this disease (347). This is due, in part, to the continued expansion of the worldwide epidemic of type 2 diabetes. While the costs of illness-related stress hyperglycemia are not known, they are likely to be significant given the poor prognosis of such patients (348,,–351).
There is substantial observational evidence linking hyperglycemia in hospitalized patients (with or without diabetes) to poor outcomes. Cohort studies as well as a few early randomized controlled trials (RCTs) suggested that intensive treatment of hyperglycemia improved hospital outcomes (345,350,351). In general, these studies were heterogeneous in terms of patient population, blood glucose targets and insulin protocols, provision of nutritional support, and the proportion of patients receiving insulin, which limits the ability to make meaningful comparisons among them. Recent trials in critically ill patients have failed to show a significant improvement in mortality with intensive glycemic control (352,353) or have even shown increased mortality risk (354). Moreover, these recent RCTs have highlighted the risk of severe hypoglycemia resulting from such efforts (352,,,,–357).
The largest study to date, NICE-SUGAR, a multicenter, multinational RCT, compared the effect of intensive glycemic control (target 81–108 mg/dl, mean blood glucose attained 115 mg/dl) to standard glycemic control (target 144–180 mg/dl, mean blood glucose attained 144 mg/dl) on outcomes among 6,104 critically ill participants, the majority of whom (>95%) required mechanical ventilation (354). Ninety-day mortality was significantly higher in the intensive versus the conventional group (78 more deaths; 27.5% vs. 24.9%, P = 0.02) in both surgical and medical patients. Mortality from cardiovascular causes was more common in the intensive group (76 more deaths; 41.6% vs. 35.8%; P = 0.02). Severe hypoglycemia was also more common in the intensively treated group (6.8% vs. 0.5%; P < 0.001). The precise reason for the increased mortality in the tightly controlled group is unknown. The results of this study lie in stark contrast to a famous 2001 single-center study that reported a 42% relative reduction in intensive-care unit (ICU) mortality in critically ill surgical patients treated to a target blood glucose of 80–110 mg/dl (350). Importantly, the control group in NICE-SUGAR had reasonably good blood glucose management maintained at a mean glucose of 144 mg/dl, only 29 mg/dl above the intensively managed patients. Accordingly, this study's findings do not disprove the notion that glycemic control in the ICU is important. However, they do strongly suggest that it is not necessary to target blood glucose values <140 mg/dl, and that a highly stringent target of <110 mg/dl may actually be dangerous.
In a recent meta-analysis of 26 trials (N = 13,567), which included the NICE-SUGAR data, the pooled relative risk (RR) of death with intensive insulin therapy was 0.93 as compared with conventional therapy (95% CI 0.83–1.04) (357). Approximately half of these trials reported hypoglycemia, with a pooled RR of intensive therapy of 6.0 (95% CI 4.5–8.0). The specific ICU setting influenced the findings, with patients in surgical ICUs appearing to benefit from intensive insulin therapy (RR 0.63 [95% CI 0.44–0.91]), while those in other critical care settings did not (medical ICU, RR 1.0 [95% CI 0.78–1.28]; “mixed” ICU, RR 0.99 [95% CI 0.86–1.12]). It was concluded that overall, intensive insulin therapy increased the risk of hypoglycemia but provided no overall benefit on mortality in the critically ill, although a possible mortality benefit to patients admitted to the surgical ICU (RR 0.63 [95% CI 0.44–0.91]) was suggested.
1. Glycemic targets in hospitalized patients
Definition of glucose abnormalities in the hospital setting
Hyperglycemia has been defined as any blood glucose level >140 mg/dl (7.8 mmol/l). Levels that are significantly and persistently above this may require treatment in hospitalized patients. In patients without a previous diagnosis of diabetes, elevated blood glucose may be due to “stress hyperglycemia,” a condition that can be established by a review of prior records or measurement of an A1C. A1C values >6.5% suggest that diabetes preceded hospitalization (358). Hypoglycemia has been defined as any blood glucose level <70 mg/dl (3.9 mmol/l). This is the standard definition in outpatients and correlates with the initial threshold for the release of counterregulatory hormones. Severe hypoglycemia in hospitalized patients has been defined by many as <40 mg/dl (2.2 mmol/l), although this is lower than the ∼50 mg/dl (2.8 mmol/l) level at which cognitive impairment begins in normal individuals (359). As with hyperglycemia, hypoglycemia among inpatients is also associated with adverse short- and long-term outcomes. Early recognition and treatment of mild to moderate hypoglycemia (40 and 69 mg/dl) (2.2 and 3.8 mmol/l) can prevent deterioration to a more severe episode with potential adverse sequelae (346).
Critically ill patients
Based on the weight of the available evidence, for the majority of critically ill patients in the ICU setting, insulin infusion should be used to control hyperglycemia, with a starting threshold of no higher than 180 mg/dl (10.0 mmol/l). Once intravenous insulin is started, the glucose level should be maintained between 140 and 180 mg/dl (7.8 and 10.0 mmol/l). Greater benefit maybe realized at the lower end of this range. Although strong evidence is lacking, somewhat lower glucose targets may be appropriate in selected patients. However, targets less than 110 mg/dl (6.1 mmol/l) are not recommended. Use of insulin infusion protocols with demonstrated safety and efficacy, resulting in low rates of hypoglycemia, are highly recommended (346).
Noncritically ill patients
With no prospective RCT data to inform specific glycemic targets in noncritically ill patients, recommendations are based on clinical experience and judgment. For the majority of noncritically ill patients treated with insulin, premeal glucose targets should generally be <140 mg/dl (7.8 mmol/l) with random blood glucose levels <180 mg/dl (10.0 mmol/l), as long as these targets can be safely achieved. To avoid hypoglycemia, consideration should be given to reassessing the insulin regimen if blood glucose levels fall below 100 mg/dl (5.6 mmol/l). Modification of the regimen is required when blood glucose values are <70 mg/dl (3.9 mmol/l), unless the event is easily explained by other factors (such as a missed meal, etc.)
Occasional patients with a prior history of successful tight glycemic control in the outpatient setting who are clinically stable may be maintained with a glucose range below the above cut points. Conversely, higher glucose ranges may be acceptable in terminally ill patients or in patients with severe comorbidities, as well as in those in patient-care settings where frequent glucose monitoring or close nursing supervision is not feasible.
Clinical judgment, combined with ongoing assessment of the patient's clinical status, including changes in the trajectory of glucose measures, the severity of illness, nutritional status, or concurrent use of medications that might affect glucose levels (e.g., steroids, octreotide) must be incorporated into the day-to-day decisions regarding insulin dosing (346).
2. Anti-hyperglycemic agents in hospitalized patients
In the hospital setting, insulin therapy is the preferred method of glycemic control in majority of clinical situations (346). In the ICU, intravenous infusion is the preferred route of insulin administration. When the patient is transitioned off intravenous insulin to subcutaneous therapy, precautions should be taken to prevent hyperglycemia escape (360,361). Outside of critical care units, scheduled subcutaneous insulin which delivers basal, nutritional, and correction (supplemental) components is preferred. Prolonged therapy with sliding scale insulin (SSI) as the sole regimen is ineffective in the majority of patients, increases risk of both hypoglycemia and hyperglycemia, and has recently been shown to be associated with adverse outcomes in general surgery patients with type 2 diabetes (362). SSI is potentially dangerous in type 1 diabetes (346). The reader is referred to several recent publications and reviews that describe currently available insulin preparations and protocols and provide guidance in use of insulin therapy in specific clinical settings including parenteral nutrition (363), enteral tube feedings, and with high-dose glucocorticoid therapy (346).
There are no data on the safety and efficacy of oral agents and injectable noninsulin therapies such as GLP1 analogs and pramlintide in the hospital. They are generally considered to have a limited role in the management of hyperglycemia in conjunction with acute illness. Continuation of these agents may be appropriate in selected stable patients who are expected to consume meals at regular intervals and they may be initiated or resumed in anticipation of discharge once the patient is clinically stable. Specific caution is required with metformin, due to the possibility that a contraindication may develop during the hospitalization, such as renal insufficiency, unstable hemodynamic status, or need for an imaging study that requires a radio-contrast dye.
3. Preventing hypoglycemia
Hypoglycemia, especially in insulin-treated patients, is the leading limiting factor in the glycemic management of type 1 and type 2 diabetes (173). In the hospital, multiple additional risk factors for hypoglycemia are present. Patients with or without diabetes may experience hypoglycemia in the hospital in association with altered nutritional state, heart failure, renal or liver disease, malignancy, infection, or sepsis. Additional triggering events leading to iatrogenic hypoglycemia include sudden reduction of corticosteroid dose, altered ability of the patient to report symptoms, reduction of oral intake, emesis, new NPO status, inappropriate timing of short- or rapid-acting insulin in relation to meals, reduction of rate of administration of intravenous dextrose, and unexpected interruption of enteral feedings or parenteral nutrition.
Despite the preventable nature of many inpatient episodes of hypoglycemia, institutions are more likely to have nursing protocols for the treatment of hypoglycemia than for its prevention. Tracking such episodes and analyzing their causes are important quality improvement activities (346).
4. Diabetes care providers in the hospital
Inpatient diabetes management may be effectively championed and/or provided by primary care physicians, endocrinologists, intensivists, or hospitalists. Involvement of appropriately trained specialists or specialty teams may reduce length of stay, improve glycemic control, and improve outcomes (346). In the care of diabetes, implementation of standardized order sets for scheduled and correction-dose insulin may reduce reliance on sliding-scale management. As hospitals move to comply with “meaningful use” regulations for electronic health records, as mandated by the Health Information Technology Act, efforts should be made to assure that all components of structured insulin order sets are incorporated into electronic insulin order sets (364,365).
A team approach is needed to establish hospital pathways. To achieve glycemic targets associated with improved hospital outcomes, hospitals will need multidisciplinary support to develop insulin management protocols that effectively and safely enable achievement of glycemic targets (366).
5. Self-management in the hospital
Self-management of diabetes in the hospital may be appropriate for competent adult patients who: have a stable level of consciousness, have reasonably stable daily insulin requirements, successfully conduct self-management of diabetes at home, have physical skills needed to successfully self-administer insulin and perform SMBG, have adequate oral intake, and are proficient in carbohydrate counting, use of multiple daily insulin injections or insulin pump therapy, and sick-day management. The patient and physician, in consultation with nursing staff, must agree that patient self-management is appropriate under the conditions of hospitalization.
Patients who use CSII pump therapy in the outpatient setting can be candidates for diabetes self-management in the hospital, provided that they have the mental and physical capacity to do so (346). A hospital policy and procedures delineating inpatient guidelines for CSII pump therapy are advisable. The availability of hospital personnel with expertise in CSII therapy is essential. It is important that nursing personnel document basal rates and bolus doses taken on a regular basis (at least daily).
6. DSME in the hospital
Teaching diabetes self-management to patients in hospitals is a challenging task. Patients are ill, under increased stress related to their hospitalization and diagnosis, and in an environment not conducive to learning. Ideally, people with diabetes should be taught at a time and place conducive to learning—as an outpatient in a recognized program of diabetes education.
For the hospitalized patient, diabetes “survival skills” education is generally a feasible approach. Patients and/or family members receive sufficient information and training to enable safe care at home. Those newly diagnosed with diabetes or who are new to insulin and/or blood glucose monitoring need to be instructed before discharge. Those patients hospitalized because of a crisis related to diabetes management or poor care at home need education to prevent subsequent episodes of hospitalization. An assessment of the need for a home health referral or referral to an outpatient diabetes education program should be part of discharge planning for all patients.
7. MNT in the hospital
The goals of MNT are to optimize glycemic control, to provide adequate calories to meet metabolic demands, and to create a discharge plan for follow-up care (345,367). ADA does not endorse any single meal plan or specified percentages of macronutrients, and the term “ADA diet” should no longer be used. Current nutrition recommendations advise individualization based on treatment goals, physiologic parameters, and medication usage. Consistent carbohydrate meal plans are preferred by many hospitals since they facilitate matching the prandial insulin dose to the amount of carbohydrate consumed (368). Because of the complexity of nutrition issues in the hospital, a registered dietitian, knowledgeable and skilled in MNT, should serve as an inpatient team member. The dietitian is responsible for integrating information about the patient's clinical condition, eating, and lifestyle habits and for establishing treatment goals in order to determine a realistic plan for nutrition therapy (369,370).
8. Bedside blood glucose monitoring
Point-of-care (POC) blood glucose monitoring performed at the bedside is used to guide insulin dosing. In the patient who is receiving nutrition, the timing of glucose monitoring should match carbohydrate exposure. In the patient who is not receiving nutrition, glucose monitoring is performed every 4 to 6 h (371,372). More frequent blood glucose testing ranging from every 30 min to every 2 h is required for patients on intravenous insulin infusions.
Safety standards should be established for blood glucose monitoring, prohibiting sharing of fingerstick lancing devices, lancets, and needles to reduce the risk of transmission of blood borne diseases. Shared lancing devices carry essentially the same risk as shared syringes and needles (373).
Accuracy of blood glucose measurements using POC meters has limitations that must be considered. Although the FDA allows a ±20% error for blood glucose meters, questions about the appropriateness of these criteria have been raised (388). Glucose measures differ significantly between plasma and whole blood, terms that are often used interchangeably and can lead to misinterpretation. Most commercially available capillary blood glucose meters introduce a correction factor of ∼1.12 to report a “plasma adjusted” value (374).
Significant discrepancies between capillary, venous, and arterial plasma samples have been observed in patients with low or high hemoglobin concentrations, hypoperfusion, and the presence of interfering substances particularly maltose, as contained in immunoglobulins (375). Analytical variability has been described with several POC meters (376). Increasingly, newer generation POC blood glucose meters correct for variation in hematocrit and for interfering substances. Any glucose result that does not correlate with the patient's status should be confirmed through conventional laboratory sampling of plasma glucose. The FDA has become increasingly concerned about the use of POC blood glucose meters in the hospital and is presently reviewing matters related to their use.
9. Discharge planning
Transition from the acute care setting is a high-risk time for all patients, not just those with diabetes or new hyperglycemia. Although there is an extensive literature concerning safe transition within and from the hospital, little of it is specific to diabetes (377). It is important to remember that diabetes discharge planning is not a separate entity, but part of an overall discharge plan. As such, discharge planning begins at admission to the hospital and is updated as projected patient needs change.
Inpatients may be discharged to varied settings, including home (with or without visiting nurse services), assisted living, rehabilitation, or skilled nursing facilities. The latter two sites are generally staffed by health professionals; therefore diabetes discharge planning will be limited to communication of medication and diet orders. For the patient who is discharged to assisted living or to home, the optimal program will need to consider the type and severity of diabetes, the effects of the patient's illness on blood glucose levels, and the capacities and desires of the patient. Smooth transition to outpatient care should be ensured. The Agency for Healthcare Research and Quality recommends that at a minimum, discharge plans include:
Medication reconciliation: The patient's medications must be cross-checked to ensure that no chronic medications were stopped and to ensure the safety of new prescriptions. Whenever possible, prescriptions for new or changed medication should be filled and reviewed with the patient and family at or before discharge
Structured discharge communication: Information on medication changes, pending tests and studies, and follow-up needs must be accurately and promptly communicated to outpatient physicians, as soon as possible after discharge.
Ideally the inpatient care providers or case managers/discharge planners will schedule follow-up visit(s) with the appropriate professionals, including primary care provider, endocrinologist, and diabetes educator (378).
An outpatient follow-up visit with the primary care provider, endocrinologist, or diabetes educator within 1 month of discharge is advised for all patients having hyperglycemia in the hospital. Clear communication with outpatient providers either directly or via hospital discharge summaries facilitates safe transitions to outpatient care. Providing information regarding the cause or the plan for determining the cause of hyperglycemia, related complications and comorbidities, and recommended treatments can assist outpatient providers as they assume ongoing care.
It is important that patients be provided with appropriate durable medical equipment, medication, supplies, and prescriptions at the time of discharge in order to avoid a potentially dangerous hiatus in care. These supplies/prescriptions should include:
Insulin (vials or pens) (if needed)
Syringes or pen needles (if needed)
Oral medications (if needed)
Blood glucose meter and strips
Lancets and lancing device
Urine ketone strips (type 1)
Glucagon emergency kit (insulin-treated)
Medical alert application/charm
IX. STRATEGIES FOR IMPROVING DIABETES CARE
There has been steady improvement in the proportion of diabetic patients achieving recommended levels of A1C, blood pressure, and LDL cholesterol in the last 10 years, both in primary care settings and in endocrinology practices. Mean A1C nationally has declined from 7.82% in 1999–2000 to 7.18% in 2004 based on National Health and Nutrition Examination Survey (NHANES) data (379). This has been accompanied by improvements in lipids and blood pressure control and led to substantial reductions in end-stage microvascular complications in those with diabetes (380). Nevertheless, in some studies only 57.1% of adults with diagnosed diabetes achieved an A1C of <7%, only 45.5% had a blood pressure <130/80 mmHg, and just 46.5% had a total cholesterol <200 mg/dl, with only 12.2% of people with diabetes achieving all three treatment goals (381). Moreover, there is persistent variation in quality of diabetes care across providers and across practice settings even after adjusting for patient factors that indicates the potential for substantial further improvements in diabetes care.
While numerous interventions to improve adherence to the recommended standards have been implemented, a major contributor to suboptimal care is a delivery system that too often is fragmented, lacks clinical information capabilities, often duplicates services, and is poorly designed for the delivery of chronic care. The Chronic Care Model (CCM) includes six core elements for the provision of optimal care of patients with chronic disease: 1) delivery system design (moving from a reactive to a proactive care delivery system, where planned visits are coordinated through a team-based approach; 2) self-management support; 3) decision support (basing care on consistent, effective care guidelines); 4) clinical information systems (using registries that can provide patient-specific and population-based support to the care team); 5) community resources and policies (identifying or developing resources to support healthy lifestyles); and 6) health systems (to create a quality-oriented culture). Alterations in reimbursement that reward the provision of quality care, as defined by the attainment of evidence-based quality measures, will also be required to achieve desired outcome goals. Redefinition of the roles of the clinic staff and promoting self-management on the part of the patient are fundamental to the successful implementation of the CCM (382). Collaborative, multidisciplinary teams are best suited to provide such care for people with chronic conditions like diabetes and to facilitate patients' performance of appropriate self-management.
A rapidly evolving literature suggests that there are three major strategies to successfully improve the quality of diabetes care delivered by a team of providers. NDEP maintains an online resource (www.betterdiabetescare.nih.gov) to help health care professionals design and implement more effective health care delivery systems for those with diabetes.
Three specific objectives, with references to literature that outlines practical strategies to achieve each, are outlined below.
Objective 1
Provider and team behavior change: Facilitate timely and appropriate intensification of lifestyle and/or pharmaceutical therapy of patients who have not achieved beneficial levels of blood pressure, lipid, or glucose control.
Clinical information systems including registries that can prospectively identify and track those requiring assessments and/or treatment modifications by the team.
Electronic medical record-based clinical decision support at the point of care, both personalize and standardize care and can be used by multiple providers (383).
Use of checklists and/or flow sheets that mirror guidelines.
Detailed treatment algorithms enabling multiple team members to “treat to target” and appropriately intensify therapy.
Availability of care or disease management services (384) by nurses, pharmacists, and other providers using detailed algorithms often catalyzing reduction in A1C, blood pressure, and LDL cholesterol (385,386).
Objective 2
Patient behavior change: Implement a systematic approach to support patients' behavior change efforts as needed including 1) healthy lifestyle (physical activity, healthy eating, nonuse of tobacco, weight management, effective coping, medication taking and management); 2) prevention of diabetes complications (screening for eye, foot, and renal complications; immunizations); and 3) achievement of appropriate blood pressure, lipid, and glucose goals.
Delivery of high-quality DSME, which has been shown to improve patient self-management, satisfaction, and glucose control (115,387).
Delivery of ongoing diabetes self-management support (DSMS) to ensure that gains achieved during DSME are sustained (128–129). National DSME standards call for an integrated approach that includes clinical content and skills, behavioral strategies (goal-setting, problem solving), and addressing emotional concerns in each needed curriculum content area. Provision of continuing education and support (DSMS) improves maintenance of gains regardless of the educational methodology (89).
Provision of automated reminders via multiple communication channels to various subgroups of diabetic patients (96).
Objective 3
Change the system of care: Research on the comprehensive CCM suggests additional strategies to improve diabetes care, including the following:
Basing care on consistent, evidence-based care guidelines
Redefining and expanding the roles of the clinic staff (382)
Collaborative, multidisciplinary teams to provide high-quality care and support patients' appropriate self-management
Audit and feedback of process and outcome data to providers to encourage population-based care improvement strategies
Care management, one of the most effective diabetes quality improvement strategies to improve glycemic control (384).
Identifying and/or developing community resources and public policy that support healthy lifestyles
Alterations in reimbursement that reward the provision of appropriate and high-quality care and accommodate the need to personalize care goals, providing additional incentives to improve diabetes care (382,388,,,–392)
The most successful practices have an institutional priority for quality of care, expanding the role of teams and staff, redesigning their delivery system, activating and educating their patients, and using electronic health record tools (393,394). Recent initiatives such as the Patient Centered Medical Home show promise in improving outcomes through coordinated primary care and offer new opportunities for team-based chronic disease care (395).
It is clear that optimal diabetes management requires an organized, systematic approach and involvement of a coordinated team of dedicated health care professionals working in an environment where patient-centered high-quality care is a priority.