Recommendations

  • Older adults who are functional and cognitively intact and have significant life expectancy should receive diabetes care with goals similar to those developed for younger adults. E

  • Glycemic goals for some older adults might reasonably be relaxed, using individual criteria, but hyperglycemia leading to symptoms or risk of acute hyperglycemic complications should be avoided in all patients. E

  • Other cardiovascular risk factors should be treated in older adults with consideration of the time frame of benefit and the individual patient. Treatment of hypertension is indicated in virtually all older adults, and lipid-lowering and aspirin therapy may benefit those with life expectancy at least equal to the time frame of primary or secondary prevention trials. E

  • Screening for diabetes complications should be individualized in older adults, but particular attention should be paid to complications that would lead to functional impairment. E

  • Older adults (≥65 years of age) with diabetes should be considered a high-priority population for depression screening and treatment. B

Diabetes is an important health condition for the aging population; at least 20% of patients over the age of 65 years have diabetes, and this number is expected to grow rapidly in the coming decades. Older individuals with diabetes have higher rates of premature death, functional disability, and coexisting illnesses, such as hypertension, coronary heart disease, and stroke, than those without diabetes. Older adults with diabetes are also at a greater risk than other older adults for several common geriatric syndromes, such as polypharmacy, cognitive impairment, urinary incontinence, injurious falls, and persistent pain. Screening for diabetes complications in older adults also should be individualized. Older adults are at an increased risk for depression and should therefore be screened and treated accordingly (1). Particular attention should be paid to complications that can develop over short periods of time and/or that would significantly impair functional status, such as visual and lower-extremity complications. Please refer to the American Diabetes Association consensus report “Diabetes in Older Adults” for details (2).

The care of older adults with diabetes is complicated by their clinical and functional heterogeneity. Some older individuals developed diabetes years earlier and may have significant complications; others are newly diagnosed and may have had years of undiagnosed diabetes with resultant complications; and still other older adults may have truly recent-onset disease with few or no complications. Some older adults with diabetes are frail and have other underlying chronic conditions, substantial diabetes-related comorbidity, or limited physical or cognitive functioning. Other older individuals with diabetes have little comorbidity and are active. Life expectancies are highly variable for this population but are often longer than clinicians realize. Providers caring for older adults with diabetes must take this heterogeneity into consideration when setting and prioritizing treatment goals (Table 10.1 ).

Table 10.1

Framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes

Patient characteristics/ health statusRationaleReasonable A1C goalFasting or preprandial glucose (mg/dL)Bedtime glucose (mg/dL)Blood pressure (mmHg)Lipids
Healthy (few coexisting chronic illnesses, intact cognitive and functional status) Longer remaining life expectancy <7.5% 90–130 90–150 <140/90 Statin unless contraindicated or not tolerated 
Complex/intermediate (multiple coexisting chronic illnesses* or 2+ instrumental ADL impairments or mild-to-moderate cognitive impairment) Intermediate remaining life expectancy, high treatment burden, hypoglycemia vulnerability, fall risk <8.0% 90–150 100–180 <140/90 Statin unless contraindicated or not tolerated 
Very complex/poor health (long-term care or end-stage chronic illnesses** or moderate-to-severe cognitive impairment or 2+ ADL dependencies) Limited remaining life expectancy makes benefit uncertain <8.5% 100–180 110–200 <150/90 Consider likelihood of benefit with statin (secondary prevention more so than primary) 
Patient characteristics/ health statusRationaleReasonable A1C goalFasting or preprandial glucose (mg/dL)Bedtime glucose (mg/dL)Blood pressure (mmHg)Lipids
Healthy (few coexisting chronic illnesses, intact cognitive and functional status) Longer remaining life expectancy <7.5% 90–130 90–150 <140/90 Statin unless contraindicated or not tolerated 
Complex/intermediate (multiple coexisting chronic illnesses* or 2+ instrumental ADL impairments or mild-to-moderate cognitive impairment) Intermediate remaining life expectancy, high treatment burden, hypoglycemia vulnerability, fall risk <8.0% 90–150 100–180 <140/90 Statin unless contraindicated or not tolerated 
Very complex/poor health (long-term care or end-stage chronic illnesses** or moderate-to-severe cognitive impairment or 2+ ADL dependencies) Limited remaining life expectancy makes benefit uncertain <8.5% 100–180 110–200 <150/90 Consider likelihood of benefit with statin (secondary prevention more so than primary) 

This represents a consensus framework for considering treatment goals for glycemia, blood pressure, and dyslipidemia in older adults with diabetes. The patient characteristic categories are general concepts. Not every patient will clearly fall into a particular category. Consideration of patient and caregiver preferences is an important aspect of treatment individualization. Additionally, a patient’s health status and preferences may change over time. ADL, activities of daily living.

A lower A1C goal may be set for an individual if achievable without recurrent or severe hypoglycemia or undue treatment burden.

*

Coexisting chronic illnesses are conditions serious enough to require medications or lifestyle management and may include arthritis, cancer, congestive heart failure, depression, emphysema, falls, hypertension, incontinence, stage 3 or worse chronic kidney disease, myocardial infarction, and stroke. By “multiple,” we mean at least three, but many patients may have five or more (6).

**

The presence of a single end-stage chronic illness, such as stage 3–4 congestive heart failure or oxygen-dependent lung disease, chronic kidney disease requiring dialysis, or uncontrolled metastatic cancer, may cause significant symptoms or impairment of functional status and significantly reduce life expectancy.

A1C of 8.5% equates to an estimated average glucose of ∼200 mg/dL. Looser glycemic targets than this may expose patients to acute risks from glycosuria, dehydration, hyperglycemic hyperosmolar syndrome, and poor wound healing.

There are few long-term studies in older adults demonstrating the benefits of intensive glycemic, blood pressure, and lipid control. Patients who can be expected to live long enough to reap the benefits of long-term intensive diabetes management, who have good cognitive and physical function, and who choose to do so via shared decision making may be treated using therapeutic interventions and goals similar to those for younger adults with diabetes. As with all diabetic patients, diabetes self-management education and ongoing diabetes self-management support are vital components of diabetes care for older adults and their caregivers.

For patients with advanced diabetes complications, life-limiting comorbid illness, or substantial cognitive or functional impairment, it is reasonable to set less intensive glycemic target goals. These patients are less likely to benefit from reducing the risk of microvascular complications and more likely to suffer serious adverse effects from hypoglycemia. However, patients with poorly controlled diabetes may be subject to acute complications of diabetes, including dehydration, poor wound healing, and hyperglycemic hyperosmolar coma. Glycemic goals at a minimum should avoid these consequences.

Although hyperglycemia control may be important in older individuals with diabetes, greater reductions in morbidity and mortality are likely to result from control of other cardiovascular risk factors rather than from tight glycemic control alone. There is strong evidence from clinical trials of the value of treating hypertension in the elderly (3,4). There is less evidence for lipid-lowering and aspirin therapy, although the benefits of these interventions for primary and secondary prevention are likely to apply to older adults whose life expectancies equal or exceed the time frames seen in clinical trials.

Older adults are at a higher risk of hypoglycemia for many reasons, including insulin deficiency and progressive renal insufficiency. In addition, older adults tend to have higher rates of unidentified cognitive deficits, causing difficulty in complex self-care activities (e.g., glucose monitoring, adjusting insulin doses, etc.). These deficits have been associated with increased risk of hypoglycemia and with severe hypoglycemia linked to increased dementia. Therefore, it is important to routinely screen older adults for cognitive dysfunction and discuss findings with the caregivers. Hypoglycemic events should be diligently monitored, and glycemic targets may need to be adjusted to accommodate for the changing needs of the older adult (2).

Special care is required in prescribing and monitoring pharmacological therapy in older adults. Cost may be a significant factor, especially as older adults tend to be on many medications. Metformin may be contraindicated because of renal insufficiency or significant heart failure. Thiazolidinediones, if used at all, should be used very cautiously in those with, or at risk for, congestive heart failure and have been associated with fractures. Sulfonylureas, other insulin secretagogues, and insulin can cause hypoglycemia. Insulin use requires that patients or caregivers have good visual and motor skills and cognitive ability. GLP-1 agonists and dipeptidyl peptidase-4 inhibitors have few side effects, but their costs may be a barrier to some older patients. A clinical trial, Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes Mellitus–Thrombolysis in Myocardial Infarction 53 (SAVOR-TIMI 53), evaluated saxagliptin (a dipeptidyl peptidase-4 inhibitor) and its impact on cardiovascular outcomes (5). Patients treated with saxagliptin were more likely to be hospitalized for heart failure than were those given a placebo (3.5% vs. 2.8%, respectively, according to 2-year Kaplan-Meier estimates; hazard ratio 1.27 [95% CI 1.07−1.51]; P = 0.007).

Suggested citation: American Diabetes Association. Older adults. Sec. 10. In Standards of Medical Care in Diabetes—2015. Diabetes Care 2015;38(Suppl. 1):S67–S69

1.
Kimbro
LB
,
Mangione
CM
,
Steers
WN
, et al
.
Depression and all-cause mortality in persons with diabetes mellitus: are older adults at higher risk? Results from the Translating Research Into Action for Diabetes Study
.
J Am Geriatr Soc
2014
;
62
:
1017
1022
2.
Kirkman
MS
,
Briscoe
VJ
,
Clark
N
, et al
.
Diabetes in older adults
.
Diabetes Care
2012
;
35
:
2650
2664
3.
Beckett
NS
,
Peters
R
,
Fletcher
AE
, et al
HYVET Study Group
.
Treatment of hypertension in patients 80 years of age or older
.
N Engl J Med
2008
;
358
:
1887
1898
4.
James
PA
,
Oparil
S
,
Carter
BL
, et al
.
2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8)
.
JAMA
2014
;
311
:
507
520
5.
Scirica
BM
,
Bhatt
DL
,
Braunwald
E
, et al
SAVOR-TIMI 53 Steering Committee and Investigators
.
Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus
.
N Engl J Med
2013
;
369
:
1317
1326
6.
Laiteerapong
N
,
Iveniuk
J
,
John
PM
,
Laumann
EO
,
Huang
ES
.
Classification of older adults who have diabetes by comorbid conditions, United States, 2005-2006
.
Prev Chronic Dis
2012
;
9
:
E100