Recommendations

Screening

  • At least once a year, assess urinary albumin (e.g., spot urinary albumin–to–creatinine ratio) and estimated glomerular filtration rate in patients with type 1 diabetes with duration of ≥5 years, in all patients with type 2 diabetes, and in all patients with comorbid hypertension. B

Treatment

  • Optimize glucose control to reduce the risk or slow the progression of diabetic kidney disease. A

  • Optimize blood pressure control (<140/90 mmHg) to reduce the risk or slow the progression of diabetic kidney disease. A

  • For people with nondialysis-dependent diabetic kidney disease, dietary protein intake should be 0.8 g/kg body weight per day (the recommended daily allowance). For patients on dialysis, higher levels of dietary protein intake should be considered. A

  • Either an ACE inhibitor or an angiotensin receptor blocker is recommended for the treatment of nonpregnant patients with diabetes and modestly elevated urinary albumin excretion (30–299 mg/day) B and is strongly recommended for those with urinary albumin excretion ≥300 mg/day and/or estimated glomerular filtration rate <60 mL/min/1.73 m2. A

  • Periodically monitor serum creatinine and potassium levels for the development of increased creatinine or changes in potassium when ACE inhibitors, angiotensin receptor blockers, or diuretics are used. E

  • Continued monitoring of urinary albumin–to–creatinine ratio in patients with albuminuria treated with an ACE inhibitor or an angiotensin receptor blocker is reasonable to assess the response to treatment and progression of diabetic kidney disease. E

  • An ACE inhibitor or an angiotensin receptor blocker is not recommended for the primary prevention of diabetic kidney disease in patients with diabetes who have normal blood pressure, normal urinary albumin–to–creatinine ratio (<30 mg/g), and normal estimated glomerular filtration rate. B

  • When estimated glomerular filtration rate is <60 mL/min/1.73 m2, evaluate and manage potential complications of chronic kidney disease. E

  • Patients should be referred for evaluation for renal replacement treatment if they have estimated glomerular filtration rate <30 mL/min/1.73 m2. A

  • Promptly refer to a physician experienced in the care of kidney disease for uncertainty about the etiology of kidney disease, difficult management issues, and rapidly progressing kidney disease. B

Assessment of Albuminuria and Renal Function

Diabetic kidney disease, or kidney disease attributed to diabetes, occurs in 20–40% of patients with diabetes and is the leading cause of end-stage renal disease (ESRD) (1).

Screening for kidney damage (albuminuria) can be most easily performed by urinary albumin–to–creatinine ratio (UACR) in a random spot urine collection. Timed or 24-h collections are more burdensome and add little to prediction or accuracy (2,3). Measurement of a spot urine sample for albumin alone (whether by immunoassay or by using a sensitive dipstick test specific for albuminuria) without simultaneously measuring urine creatinine (Cr) is less expensive but susceptible to false-negative and false-positive determinations as a result of variation in urine concentration due to hydration.

Normal UACR is defined as <30 mg/g Cr, and increased urinary albumin excretion is defined as ≥30 mg/g Cr. Because of variability in urinary albumin excretion, two of three specimens of UACR collected within a 3- to 6-month period should be abnormal before considering a patient to have albuminuria. Exercise within 24 h, infection, fever, congestive heart failure, marked hyperglycemia, menstruation, and marked hypertension may elevate UACR independently of kidney damage.

Estimated Glomerular Filtration Rate

Serum Cr should be used to estimate glomerular filtration rate (GFR). Estimated GFR (eGFR) is commonly reported by laboratories or can be estimated using formulae such as the Modification of Diet in Renal Disease (MDRD) study equation (4) or the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. The latter is the preferred GFR estimating equation. GFR calculators are available at http://www.nkdep.nih.gov.

Abnormal urinary albumin excretion and eGFR may be used to stage chronic kidney disease (CKD). The National Kidney Foundation classification (Table 9.1) is based on both kidney damage (UACR ≥30 mg/g Cr) and eGFR.

Table 9.1

Stages of CKD

StageDescriptionGFR (mL/min/1.73 m2)
Kidney damage* with normal or increased eGFR ≥90 
Kidney damage* with mildly decreased eGFR 60–89 
Moderately decreased eGFR 30–59 
Severely decreased eGFR 15–29 
Kidney failure <15 or dialysis 
StageDescriptionGFR (mL/min/1.73 m2)
Kidney damage* with normal or increased eGFR ≥90 
Kidney damage* with mildly decreased eGFR 60–89 
Moderately decreased eGFR 30–59 
Severely decreased eGFR 15–29 
Kidney failure <15 or dialysis 
*

Kidney damage is defined as abnormalities on pathological, urine, blood, or imaging tests. Adapted from Levey et al. (3).

Surveillance

The need for annual quantitative assessment of albumin excretion after diagnosis of albuminuria, institution of ACE inhibitor or angiotensin receptor blocker (ARB) therapy, and achieving blood pressure control is a subject of debate. Continued surveillance can assess both response to therapy and disease progression and may aid in assessing adherence to ACE inhibitor or ARB therapy. Some suggest that reducing UACR to normal (<30 mg/g Cr) or near normal may improve CKD and cardiovascular disease (CVD) prognosis, but this approach has not been formally evaluated in prospective trials, and evidence demonstrates spontaneous remission of albuminuria in up to 40% of patients with type 1 diabetes.

Progression of Diabetic Kidney Disease

Conversely, patients with increasing UACR, declining eGFR, retinopathy, increasing blood pressure, macrovascular disease, elevated lipids and/or uric acid concentrations, or a family history of CKD are more likely to experience a progression of diabetic kidney disease (5).

Complications of kidney disease correlate with level of kidney function. When eGFR is <60 mL/min/1.73 m2, screening for complications of CKD is indicated (Table 9.2). Early vaccination against hepatitis B virus is indicated in patients likely to progress to ESRD.

Table 9.2

Management of CKD in diabetes

GFR (mL/min/1.73 m2)Recommended management
All patients Yearly measurement of Cr, UACR, potassium 
45–60 Referral to a nephrologist if possibility for nondiabetic kidney disease exists (duration of type 1 diabetes <10 years, persistent albuminuria, abnormal findings on renal ultrasound, resistant hypertension, rapid fall in eGFR, or active urinary sediment on urine microscopic examination) 
Consider the need for dose adjustment of medications 
Monitor eGFR every 6 months 
Monitor electrolytes, bicarbonate, hemoglobin, calcium, phosphorus, and parathyroid hormone at least yearly 
Assure vitamin D sufficiency 
Consider bone density testing 
Referral for dietary counseling 
30–44 Monitor eGFR every 3 months 
Monitor electrolytes, bicarbonate, calcium, phosphorus, parathyroid hormone, hemoglobin, albumin, and weight every 3–6 months 
Consider the need for dose adjustment of medications 
<30 Referral to a nephrologist 
GFR (mL/min/1.73 m2)Recommended management
All patients Yearly measurement of Cr, UACR, potassium 
45–60 Referral to a nephrologist if possibility for nondiabetic kidney disease exists (duration of type 1 diabetes <10 years, persistent albuminuria, abnormal findings on renal ultrasound, resistant hypertension, rapid fall in eGFR, or active urinary sediment on urine microscopic examination) 
Consider the need for dose adjustment of medications 
Monitor eGFR every 6 months 
Monitor electrolytes, bicarbonate, hemoglobin, calcium, phosphorus, and parathyroid hormone at least yearly 
Assure vitamin D sufficiency 
Consider bone density testing 
Referral for dietary counseling 
30–44 Monitor eGFR every 3 months 
Monitor electrolytes, bicarbonate, calcium, phosphorus, parathyroid hormone, hemoglobin, albumin, and weight every 3–6 months 
Consider the need for dose adjustment of medications 
<30 Referral to a nephrologist 

Identifying and monitoring diabetic kidney disease relies on assessments of kidney damage (albuminuria) and kidney function (eGFR). Persistently increased UACR in the range of UACR 30–299 mg/g Cr is an early indicator of diabetic kidney disease in type 1 diabetes and a marker for development of diabetic kidney disease in type 2 diabetes. It is also a well-established marker of increased CVD risk (68).

Not all people with diabetes, kidney disease, and reduced eGFR have albuminuria. In addition, there is increasing evidence that up to 40% of patients with type 1 diabetes and UACR levels 30–299 mg/g Cr have spontaneous remissions and approximately 30–40% remain with UACR levels of 30–299 mg/g Cr and do not progress to higher levels over 5–10 years of follow-up (5,911). Patients with persistent and severely increased (≥300 mg/g Cr) levels of albuminuria are likely to develop ESRD (12,13).

The presence of diabetic retinopathy in patients with UACR ≥300 mg/g Cr strongly suggests diabetic kidney disease, and its absence in those with reduced eGFR and UACR <300 mg/g Cr suggests nondiabetic CKD. Other causes of CKD should be considered in patients with diabetes and CKD but without diabetic retinopathy and in those with an active urine sediment, with rapidly increasing proteinuria or nephrotic syndrome with low or rapidly decreasing eGFR, with >30% reduction in eGFR within 2–3 months of initiating ACE inhibitor or ARB therapy, with refractory hypertension, or with signs or symptoms of other systemic diseases.

Interventions

Nutrition

For people with nondialysis-dependent diabetic kidney disease, dietary protein intake should be 0.8 g/kg body weight per day (the recommended daily allowance). Compared with higher levels of dietary protein intake, this level slowed GFR decline with evidence of a greater effect over time. Higher levels of dietary protein intake (>20% of daily calories from protein or >1.3 g/kg/day) have been associated with increased albuminuria, more rapid kidney function loss, and CVD mortality and therefore should be avoided. Reducing the amount of dietary protein below the recommended daily allowance of 0.8 g/kg/day is not recommended because it does not alter glycemic measures, cardiovascular risk measures, or the course of GFR decline.

Glycemia

A number of interventions have been demonstrated to reduce the risk and slow the progression of diabetic kidney disease. Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to delay the onset and progression of increased urinary albumin excretion and reduced eGFR in patients with type 1 diabetes (13) and type 2 diabetes (1,1417).

Despite prior concerns and published case reports, current data indicate that the overall risk of metformin-associated lactic acidosis is low (1). GFR may be a more appropriate measure to assess continued metformin use than serum Cr, considering that the serum Cr level can translate into widely varying eGFR levels depending on age, ethnicity, and muscle mass (18). A review (19) proposed that metformin use should be reevaluated at an eGFR <45 mL/min/1.73 m2 with a reduction in maximum dose to 1,000 mg/day. Metformin should be discontinued when eGFR is <30 mL/min/1.73 m2; in clinical situations in which there is an increased risk of lactic acidosis, such as sepsis, hypotension, and hypoxia; or when there is a high risk of acute kidney injury resulting in a worsening of GFR, such as administration of radiocontrast dye in those with eGFR <60 mL/min/1.73 m2.

Blood Pressure

There are no randomized controlled trials of blood pressure levels in diabetes that have examined CKD events as outcomes. Blood pressure levels below 140/90 mmHg in diabetes are recommended to reduce CVD mortality and slow CKD progression. In individuals with albuminuria, consider lower blood pressure targets of <130/80 mmHg (20,21). Of note, there is an adverse safety signal in clinical trials of diabetic kidney disease when diastolic blood pressure is treated to below 70 mmHg and especially below 60 mmHg in older populations. As a result, clinical judgment should be used when attempting to achieve systolic blood pressure targets <130 mmHg to avoid diastolic blood pressure levels below 60–70 mmHg.

The UK Prospective Diabetes Study (UKPDS) provided strong evidence that blood pressure control can reduce the development of diabetic kidney disease (22). Interruption of the renin-angiotensin-aldosterone system with either ACE inhibitors or ARBs contributes to reductions of kidney disease events in hypertensive patients with diabetes and eGFR <60 mL/min/1.73 m2 and UACR ≥300 mg/g Cr.

ACE inhibitors have been shown to reduce major CVD events in patients with diabetes (23), thus further supporting the use of these agents in patients with albuminuria, a CVD risk factor. In those with diabetic kidney disease, some evidence suggests that ARBs compared with ACE inhibitors are associated with a smaller increase in serum potassium levels (24).

Combination Therapy

Two clinical trials studied the combinations of ACE inhibitors and ARBs and found no benefits on CVD or diabetic kidney disease, and the drug combination had higher adverse event rates (hyperkalemia and/or acute kidney injury) (25). Therefore, the combined use of ACE inhibitors and ARBs should be avoided.

Mineralocorticoid receptor blockers (spironolactone) in combination with ACE inhibitors or ARBs remain an area of great interest and have been explored in several short-term studies with a positive effect on albuminuria reduction in diabetic kidney disease. There was, however, an increase in hyperkalemic episodes in those on dual therapy, and larger trials are needed before recommending such therapy.

Diuretics, calcium channel blockers, and β-blockers can be used as add-on therapy to achieve blood pressure goals in patients treated with maximum doses of ACE inhibitors or ARBs (26) or as alternate therapy in the rare individual unable to tolerate ACE inhibitors and ARBs.

Referral to a Nephrologist

Consider referral to a physician experienced in the care of kidney disease when there is uncertainty about the etiology of kidney disease (absence of retinopathy, heavy proteinuria, active urine sediment, or rapid decline in GFR). Other triggers for referral may include difficult management issues (anemia, secondary hyperparathyroidism, metabolic bone disease, resistant hypertension, or electrolyte disturbances) or advanced kidney disease. The threshold for referral may vary depending on the frequency with which a provider encounters patients with diabetes and kidney disease. Consultation with a nephrologist when stage 4 CKD develops (eGFR ≤30 mL/min/1.73 m2) has been found to reduce cost, improve quality of care, and delay dialysis (27). However, other specialists and providers should also educate their patients about the progressive nature of diabetic kidney disease, the kidney preservation benefits of proactive treatment of blood pressure and blood glucose, and the potential need for renal replacement therapy.

Recommendations

  • Optimize glycemic control to reduce the risk or slow the progression of diabetic retinopathy. A

  • Optimize blood pressure and serum lipid control to reduce the risk or slow the progression of diabetic retinopathy. A

Screening

  • Adults with type 1 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist within 5 years after the onset of diabetes. B

  • Patients with type 2 diabetes should have an initial dilated and comprehensive eye examination by an ophthalmologist or optometrist at the time of the diabetes diagnosis. B

  • If there is no evidence of retinopathy for one or more annual eye exams, then exams every 2 years may be considered. If any level of diabetic retinopathy is present, subsequent dilated retinal examinations for patients with type 1 or type 2 diabetes should be repeated at least annually by an ophthalmologist or optometrist. If retinopathy is progressing or sight-threatening, then examinations will be required more frequently. B

  • While retinal photography may serve as a screening tool for retinopathy, it is not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. E

  • Eye examinations should occur before pregnancy or in the first trimester, and then patients should be monitored every trimester and for 1 year postpartum as indicated by the degree of retinopathy. B

Treatment

  • Promptly refer patients with any level of macular edema, severe nonproliferative diabetic retinopathy (a precursor of proliferative diabetic retinopathy), or any proliferative diabetic retinopathy to an ophthalmologist who is knowledgeable and experienced in the management and treatment of diabetic retinopathy. A

  • Laser photocoagulation therapy is indicated to reduce the risk of vision loss in patients with high-risk proliferative diabetic retinopathy and, in some cases, severe nonproliferative diabetic retinopathy. A

  • Intravitreal injections of antivascular endothelial growth factor are indicated for center-involved diabetic macular edema, which occurs beneath the foveal center and may threaten reading vision. A

  • The presence of retinopathy is not a contraindication to aspirin therapy for cardioprotection, as aspirin does not increase the risk of retinal hemorrhage. A

Diabetic retinopathy is a highly specific vascular complication of both type 1 and type 2 diabetes, with prevalence strongly related to both the duration of diabetes and the level of glycemic control. Diabetic retinopathy is the most frequent cause of new cases of blindness among adults aged 20–74 years in developed countries. Glaucoma, cataracts, and other disorders of the eye occur earlier and more frequently in people with diabetes.

In addition to diabetes duration, factors that increase the risk of, or are associated with, retinopathy include chronic hyperglycemia (28), nephropathy (29), hypertension (30), and dyslipidemia (31). Intensive diabetes management with the goal of achieving near-normoglycemia has been shown in large prospective randomized studies to prevent and/or delay the onset and progression of diabetic retinopathy (15,32).

Lowering blood pressure has been shown to decrease retinopathy progression, although tight targets (systolic <120 mmHg) do not impart additional benefit (32). In patients with dyslipidemia, retinopathy progression may be slowed by the addition of fenofibrate, particularly with very mild nonproliferative diabetic retinopathy (NPDR) at baseline (31). Several case series and a controlled prospective study suggest that pregnancy in patients with type 1 diabetes may aggravate retinopathy and threaten vision, especially when glycemic control is poor at the time of conception (33,34). Laser photocoagulation surgery can minimize the risk of vision loss (34).

Screening

The preventive effects of therapy and the fact that patients with proliferative diabetic retinopathy (PDR) or macular edema may be asymptomatic provide strong support for screening to detect diabetic retinopathy.

An ophthalmologist or optometrist who is knowledgeable and experienced in diagnosing diabetic retinopathy should perform the examinations. If diabetic retinopathy is present, prompt referral to an ophthalmologist is recommended. Subsequent examinations for patients with type 1 or type 2 diabetes are generally repeated annually for patients with minimal to no retinopathy. Exams every 2 years may be cost-effective after one or more normal eye exams, and in a population with well-controlled type 2 diabetes, there was essentially no risk of development of significant retinopathy with a 3-year interval after a normal examination (35). Examinations will be required more frequently by the ophthalmologist if retinopathy is progressing.

Retinal photography, with remote reading by experts, has great potential to provide screening services in areas where qualified eye care professionals are not readily available (36). High-quality fundus photographs can detect most clinically significant diabetic retinopathy. Interpretation of the images should be performed by a trained eye care provider. Retinal photography may also enhance efficiency and reduce costs when the expertise of ophthalmologists can be used for more complex examinations and for therapy (37). In-person exams are still necessary when the retinal photos are unacceptable and for follow-up if abnormalities are detected. Retinal photos are not a substitute for a comprehensive eye exam, which should be performed at least initially and at intervals thereafter as recommended by an eye care professional. Results of eye examinations should be documented and transmitted to the referring health care professional.

Type 1 Diabetes

Because retinopathy is estimated to take at least 5 years to develop after the onset of hyperglycemia, patients with type 1 diabetes should have an initial dilated and comprehensive eye examination within 5 years after the diagnosis of diabetes (38).

Type 2 Diabetes

Patients with type 2 diabetes who may have had years of undiagnosed diabetes and have a significant risk of prevalent diabetic retinopathy at the time of diagnosis should have an initial dilated and comprehensive eye examination at the time of diagnosis.

Pregnancy

Pregnancy is associated with a rapid progression of diabetic retinopathy (39,40). Women with preexisting type 1 or type 2 diabetes who are planning pregnancy or who have become pregnant should be counseled on the risk of development and/or progression of diabetic retinopathy. In addition, rapid implementation of tight glycemic control in the setting of retinopathy is associated with worsening of retinopathy (34). Women who develop gestational diabetes mellitus do not require an eye examination during pregnancy and do not appear to be at increased risk of developing diabetic retinopathy during pregnancy (41).

Treatment

Two of the main motivations for screening for diabetic retinopathy are to prevent loss of vision and to intervene with treatment when vision loss can be prevented or reversed.

Photocoagulation Surgery

Two large trials, the Diabetic Retinopathy Study (DRS) in patients with PDR and the Early Treatment Diabetic Retinopathy Study (ETDRS) in patients with macular edema, provide the strongest support for the therapeutic benefits of photocoagulation surgery. The DRS (42) showed that panretinal photocoagulation surgery reduced the risk of severe vision loss from PDR from 15.9% in untreated eyes to 6.4% in treated eyes, with the greatest risk–benefit ratio in those with baseline disease (disc neovascularization or vitreous hemorrhage). The ETDRS also verified the benefits of panretinal photocoagulation for high-risk PDR and in older-onset patients with severe NPDR or less-than-high-risk PDR. Panretinal laser photocoagulation is still commonly used to manage complications of diabetic retinopathy that involve retinal neovascularization and its complications.

Antivascular Endothelial Growth Factor Treatment

While the ETDRS (43) established the benefit of focal laser photocoagulation surgery in eyes with clinically significant macular edema (defined as retinal edema located at or within 500 μm of the center of the macula), current data from multiple well-designed clinical trials demonstrate that intravitreal antivascular endothelial growth factor (anti-VEGF) agents provide a more effective treatment regimen for center-involved diabetic macular edema than monotherapy or even combination therapy with laser (4446).

Historically, laser photocoagulation surgery in both trials was beneficial in reducing the risk of further visual loss in affected patients but generally not beneficial in reversing already diminished acuity. Now, intravitreal therapy with recombinant monoclonal neutralizing antibody to VEGF improves vision and has replaced the need for laser photocoagulation in the vast majority of patients with diabetic macular edema (47). Most patients require near-monthly administration of intravitreal therapy with anti-VEGF agents during the first 12 months of treatment with fewer injections needed in subsequent years to maintain remission from center-involved diabetic macular edema. Other emerging therapies for retinopathy that may use sustained intravitreal delivery of pharmacological agents are currently under investigation.

Recommendations

Screening

  • All patients should be assessed for diabetic peripheral neuropathy starting at diagnosis of type 2 diabetes and 5 years after the diagnosis of type 1 diabetes and at least annually thereafter. B

  • Assessment should include a careful history and 10-g monofilament testing and at least one of the following tests: pinprick, temperature, or vibration sensation. B

  • Symptoms and signs of autonomic neuropathy should be assessed in patients with microvascular and neuropathic complications. E

Treatment

  • Optimize glucose control to prevent or delay the development of neuropathy in patients with type 1 diabetes A and to slow the progression of neuropathy in patients with type 2 diabetes. B

  • Assess and treat patients to reduce pain related to diabetic peripheral neuropathy B and symptoms of autonomic neuropathy and to improve quality of life. E

The diabetic neuropathies are a heterogeneous group of disorders with diverse clinical manifestations. The early recognition and appropriate management of neuropathy in the patient with diabetes is important.

  1. Diabetic neuropathy is a diagnosis of exclusion. Nondiabetic neuropathies may be present in patients with diabetes and may be treatable.

  2. Numerous treatment options exist for symptomatic diabetic neuropathy.

  3. Up to 50% of diabetic peripheral neuropathy (DPN) may be asymptomatic. If not recognized and if preventive foot care is not implemented, patients are at risk for injuries to their insensate feet.

  4. Recognition and treatment of autonomic neuropathy may improve symptoms, reduce sequelae, and improve quality of life.

Specific treatment for the underlying nerve damage, other than improved glycemic control, is currently not available. Glycemic control can effectively prevent DPN and cardiac autonomic neuropathy (CAN) in type 1 diabetes (48,49) and may modestly slow their progression in type 2 diabetes (17) but does not reverse neuronal loss. Therapeutic strategies (pharmacological and nonpharmacological) for the relief of symptoms related to painful DPN or autonomic neuropathy can potentially reduce pain (50) and improve quality of life.

Diagnosis

Diabetic Peripheral Neuropathy

Patients with type 1 diabetes for 5 or more years and all patients with type 2 diabetes should be assessed annually for DPN using medical history and simple clinical tests. Symptoms vary according to the class of sensory fibers involved. The most common early symptoms are induced by the involvement of small fibers and include pain and dysesthesias (unpleasant sensations of burning and tingling). The involvement of large fibers may cause numbness and loss of protective sensation (LOPS). LOPS indicates the presence of distal sensorimotor polyneuropathy and is a risk factor for diabetic foot ulceration. The following clinical tests may be used to assess small- and large-fiber function and protective sensation:

  1. Small-fiber function: pinprick and temperature sensation

  2. Large-fiber function: vibration perception, 10-g monofilament, and ankle reflexes

  3. Protective sensation: 10-g monofilament

These tests not only screen for the presence of dysfunction but also predict future risk of complications. Electrophysiological testing or referral to a neurologist is rarely needed, except in situations where the clinical features are atypical or the diagnosis is unclear.

In all patients with diabetes and DPN, causes of neuropathy other than diabetes should be considered, including toxins (alcohol), neurotoxic medications (chemotherapy), vitamin B12 deficiency, hypothyroidism, renal disease, malignancies (multiple myeloma, bronchogenic carcinoma), infections (HIV), chronic inflammatory demyelinating neuropathy, inherited neuropathies, and vasculitis (51).

Diabetic Autonomic Neuropathy

The symptoms and signs of autonomic dysfunction should be elicited carefully during the history and physical examination. Major clinical manifestations of diabetic autonomic neuropathy include hypoglycemia unawareness, resting tachycardia, orthostatic hypotension, gastroparesis, constipation, diarrhea, fecal incontinence, erectile dysfunction, neurogenic bladder, and sudomotor dysfunction with either increased or decreased sweating.

Cardiac Autonomic Neuropathy

CAN is associated with mortality independent of other cardiovascular risk factors (52,53). In its early stages, CAN may be completely asymptomatic and detected only by decreased heart rate variability with deep breathing. Advanced disease may be associated with resting tachycardia (>100 bpm) and orthostatic hypotension (a fall in systolic or diastolic blood pressure by >20 mmHg or >10 mmHg, respectively, upon standing without an appropriate increase in heart rate). CAN treatment is generally focused on alleviating symptoms.

Gastrointestinal Neuropathies

Gastrointestinal neuropathies may involve any portion of the gastrointestinal tract with manifestations including esophageal dysmotility, gastroparesis, constipation, diarrhea, and fecal incontinence. Gastroparesis should be suspected in individuals with erratic glucose control or with upper gastrointestinal symptoms without another identified cause. Evaluation of gastric emptying using the gastric emptying breath test, a new noninvasive test that does not use radiation-emitting compounds (54), or the double-isotope scintigraphy may be performed if symptoms suggest gastroparesis, but test results are likely to be abnormal in the setting of recent uncontrolled hyperglycemia or diabetic ketoacidosis and often correlate poorly with symptoms. Constipation is the most common lower-gastrointestinal symptom but can alternate with episodes of diarrhea.

Genitourinary Disturbances

Diabetic autonomic neuropathy may also cause genitourinary disturbances. In men, diabetic autonomic neuropathy may cause erectile dysfunction and/or retrograde ejaculation. Evaluation of bladder function should be performed for individuals with diabetes who have recurrent urinary tract infections, pyelonephritis, incontinence, or a palpable bladder.

Treatment

Glycemic Control

Near-normal glycemic control, implemented early in the course of diabetes, has been shown to effectively delay or prevent the development of DPN and CAN in patients with type 1 diabetes (5558). Although the evidence for the benefit of near-normal glycemic control is not as strong for type 2 diabetes, some studies have demonstrated a modest slowing of progression (59,60) without reversal of neuronal loss. Several observational studies suggest that neuropathic symptoms improve not only with optimization of glycemic control but also with the avoidance of extreme blood glucose fluctuations.

Diabetic Peripheral Neuropathy

DPN symptoms, and especially neuropathic pain, can be severe and can impact quality of life, limit mobility, and contribute to depression and social dysfunction (61). Several medications have been demonstrated to be effective for the treatment of pain associated with DPN, but there is limited clinical evidence regarding which medication is most effective for an individual patient (62,63).

The U.S. Food and Drug Administration (FDA) has approved three medications (pregabalin, duloxetine, and tapentadol) for the treatment of pain associated with DPN, but none affords complete relief, even when used in combination. Tricyclic antidepressants, gabapentin, venlafaxine, carbamazepine, tramadol, and topical capsaicin, although not approved for the treatment of painful DPN, may be effective and considered for the treatment of painful DPN. Comparative efficacy studies and trials that include quality-of-life outcomes are rare, so treatment decisions must consider each patient’s presentation and comorbidities and often follow a trial-and-error approach. Given the range of partially effective treatment options, a tailored and stepwise pharmacological strategy with careful attention to relative symptom improvement, medication adherence, and medication side effects is recommended to achieve pain reduction and improve quality of life (50,64,65).

Orthostatic Hypotension

Treating orthostatic hypotension is challenging. The therapeutic goal is to minimize postural symptoms rather than to restore normotension. Most patients require both nonpharmacological measures (e.g., ensuring adequate salt intake, avoiding medications that aggravate hypotension, or using compressive garments over the legs and abdomen) and pharmacological measures. Midodrine is the only drug approved by the FDA for the treatment of orthostatic hypotension.

Gastroparesis

Gastroparesis may improve with a low-fat, low-fiber diet, optimized glycemic control, and prokinetic agents such as metoclopramide or erythromycin. In 2009, the FDA added a boxed warning to the metoclopramide label highlighting the risks of irreversible tardive dyskinesia after long-term use of metoclopramide. The chronic use of metoclopramide should be avoided (66). Metoclopramide should be reserved for patients with the most severe symptoms that are unresponsive to other therapies. The medication should be used at the lowest dose and for the shortest duration possible, generally not to exceed 3 months, and side effects should be closely monitored.

Erectile Dysfunction

Treatments for erectile dysfunction may include phosphodiesterase type 5 inhibitors, intracorporeal or intraurethral prostaglandins, vacuum devices, or penile prostheses. Interventions for other manifestations of autonomic neuropathy are described in the American Diabetes Association (ADA) statement on neuropathy (67). As with DPN treatments, these interventions do not change the underlying pathology and natural history of the disease process but may improve the patient’s quality of life.

Recommendations

  • Perform a comprehensive foot evaluation each year to identify risk factors for ulcers and amputations. B

  • Obtain a prior history of ulceration, amputation, Charcot foot, angioplasty or vascular surgery, cigarette smoking, retinopathy, and renal disease and assess current symptoms of neuropathy (pain, burning, numbness) and vascular disease (leg fatigue, claudication). B

  • The examination should include inspection of the skin, assessment of foot deformities, neurological assessment including 10-g monofilament testing and pinprick or vibration testing or assessment of ankle reflexes, and vascular assessment including pulses in the legs and feet. B

  • Patients with a history of ulcers or amputations, foot deformities, insensate feet, and peripheral arterial disease are at substantially increased risk for ulcers and amputations and should have their feet examined at every visit. C

  • Patients with symptoms of claudication or decreased or absent pedal pulses should be referred for ankle-brachial index and for further vascular assessment. C

  • A multidisciplinary approach is recommended for individuals with foot ulcers and high-risk feet (e.g., dialysis patients and those with Charcot foot, prior ulcers, or amputation). B

  • Refer patients who smoke or who have histories of prior lower-extremity complications, loss of protective sensation, structural abnormalities, or peripheral arterial disease to foot care specialists for ongoing preventive care and lifelong surveillance. C

  • Provide general foot self-care education to all patients with diabetes. B

Foot ulcers and amputation, which are consequences of diabetic neuropathy and/or peripheral arterial disease (PAD), are common and represent major causes of morbidity and mortality in people with diabetes. Early recognition and treatment of patients with diabetes and feet at risk for ulcers and amputations can delay or prevent adverse outcomes.

The risk of ulcers or amputations is increased in people who have the following risk factors:

  • ○ History of foot ulcer

  • ○ Amputation

  • ○ Foot deformities

  • ○ Peripheral neuropathy with LOPS

  • ○ Preulcerative callus or corn

  • ○ PAD

  • ○ Poor glycemic control

  • ○ Visual impairment

  • ○ Diabetic nephropathy (especially patients on dialysis)

  • ○ Cigarette smoking

Clinicians are encouraged to review ADA screening recommendations for further details and practical descriptions of how to perform components of the comprehensive foot examination (67).

Evaluation for Loss of Protective Sensation

All adults with diabetes should undergo a comprehensive foot evaluation at least annually to identify high-risk conditions. Clinicians should ask about history of foot ulcers or amputation, neuropathic and peripheral vascular symptoms, impaired vision, renal disease, tobacco use, and foot care practices. A general inspection of skin integrity and musculoskeletal deformities should be performed. Vascular assessment should include inspection and assessment of pedal pulses.

The neurological exam performed as part of the foot examination is designed to identify LOPS rather than early neuropathy. The 10-g monofilament is the most useful test to diagnose LOPS. Ideally, the 10-g monofilament test should be performed with at least one other assessment (pinprick, temperature or vibration sensation using a 128-Hz tuning fork, or ankle reflexes). Absent monofilament sensation suggests LOPS, while at least two normal tests (and no abnormal test) rule out LOPS.

Evaluation for Peripheral Arterial Disease

Initial screening for PAD should include a history for decreased walking speed, leg fatigue, claudication, and an assessment of the pedal pulses. Ankle-brachial index testing should be performed in patients with symptoms or signs of PAD. Due to the high estimated prevalence of PAD in patients with diabetes and the fact that many patients with PAD are asymptomatic, an ADA consensus report on PAD (68) suggested that ankle-brachial index screening be performed in patients 50 years of age and older and be considered in patients under 50 years of age who have other PAD risk factors (e.g., smoking, hypertension, dyslipidemia, or duration of diabetes >10 years).

Patient Education

Patients with diabetes and high-risk foot conditions (history of ulcer or amputation, deformity, LOPS, or PAD) should be educated about their risk factors and appropriate management. Patients at risk should understand the implications of foot deformities, LOPS, and PAD; the proper care of the foot, including nail and skin care; and the importance of foot monitoring on a daily basis. Patients with LOPS should be educated on ways to substitute other sensory modalities (palpation or visual inspection using a nonbreakable mirror) for surveillance of early foot problems.

The selection of appropriate footwear and footwear behaviors at home should also be discussed. Patients’ understanding of these issues and their physical ability to conduct proper foot surveillance and care should be assessed. Patients with visual difficulties, physical constraints preventing movement, or cognitive problems that impair their ability to assess the condition of the foot and to institute appropriate responses will need other people, such as family members, to assist in their care.

Treatment

People with neuropathy or evidence of increased plantar pressures (e.g., erythema, warmth, or calluses) may be adequately managed with well-fitted walking shoes or athletic shoes that cushion the feet and redistribute pressure. People with bony deformities (e.g., hammertoes, prominent metatarsal heads, bunions) may need extra-wide or -deep shoes. People with bony deformities, including Charcot foot, who cannot be accommodated with commercial therapeutic footwear will require custom-molded shoes. Special consideration and a thorough workup should be performed when patients with neuropathy present with an acute onset of a red, hot, swollen foot or ankle, and Charcot neuroarthropathy should be excluded. Early diagnosis and treatment of Charcot neuroarthropathy is the best way to prevent deformities that increase the risk of ulceration and amputation.

Most diabetic foot infections are polymicrobial, with aerobic gram-positive cocci. Staphylococci are the most common causative organisms. Wounds without evidence of soft-tissue or bone infection do not require antibiotic therapy. Empiric antibiotic therapy can be narrowly targeted at gram-positive cocci in many patients with acute infections, but those at risk for infection with antibiotic-resistant organisms or with chronic, previously treated, or severe infections require broader-spectrum regimens and should be referred to specialized care centers (69). Foot ulcers and wound care may require care by a podiatrist, orthopedic or vascular surgeon, or rehabilitation specialist experienced in the management of individuals with diabetes (69).

Suggested citation: American Diabetes Association. Microvascular complications and foot care. Sec. 9. In Standards of Medical Care in Diabetes—2016. Diabetes Care 2016;39(Suppl. 1):S72–S80

1.
Tuttle
KR
,
Bakris
GL
,
Bilous
RW
, et al
.
Diabetic kidney disease: a report from an ADA Consensus Conference
.
Diabetes Care
2014
;
37
:
2864
2883
2.
Eknoyan
G
,
Hostetter
T
,
Bakris
GL
, et al
.
Proteinuria and other markers of chronic kidney disease: a position statement of the National Kidney Foundation (NKF) and the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
.
Am J Kidney Dis
2003
;
42
:
617
622
3.
Levey
AS
,
Coresh
J
,
Balk
E
, et al.;
National Kidney Foundation
.
National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification
.
Ann Intern Med
2003
;
139
:
137
147
4.
Levey
AS
,
Bosch
JP
,
Lewis
JB
,
Greene
T
,
Rogers
N
,
Roth
D
;
Modification of Diet in Renal Disease Study Group
.
A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation
.
Ann Intern Med
1999
;
130
:
461
470
5.
National Kidney Foundation
.
KDOQI clinical practice guideline for diabetes and CKD: 2012 update
.
Am J Kidney Dis
2012
;
60
:
850
886
6.
Krolewski
AS
,
Niewczas
MA
,
Skupien
J
, et al
.
Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria
.
Diabetes Care
2014
;
37
:
226
234
7.
Garg
JP
,
Bakris
GL
.
Microalbuminuria: marker of vascular dysfunction, risk factor for cardiovascular disease
.
Vasc Med
2002
;
7
:
35
43
8.
Klausen
K
,
Borch-Johnsen
K
,
Feldt-Rasmussen
B
, et al
.
Very low levels of microalbuminuria are associated with increased risk of coronary heart disease and death independently of renal function, hypertension, and diabetes
.
Circulation
2004
;
110
:
32
35
9.
de Boer
IH
,
Rue
TC
,
Cleary
PA
, et al.;
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group
.
Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications cohort
.
Arch Intern Med
2011
;
171
:
412
420
10.
Molitch
ME
,
Steffes
M
,
Sun
W
, et al.;
Epidemiology of Diabetes Interventions and Complications Study Group
.
Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications study
.
Diabetes Care
2010
;
33
:
1536
1543
11.
de Boer
IH
,
Sun
W
,
Cleary
PA
, et al.;
DCCT/EDIC Research Group
.
Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes
.
N Engl J Med
2011
;
365
:
2366
2376
12.
Gall
M-A
,
Hougaard
P
,
Borch-Johnsen
K
,
Parving
H-H
.
Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study
.
BMJ
1997
;
314
:
783
788
13.
The Diabetes Control and Complications (DCCT) Research Group
.
Effect of intensive therapy on the development and progression of diabetic nephropathy in the Diabetes Control and Complications Trial
.
Kidney Int
1995
;
47
:
1703
1720
14.
UK Prospective Diabetes Study (UKPDS) Group
.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34)
.
Lancet
1998
;
352
:
854
865
15.
UK Prospective Diabetes Study (UKPDS) Group
.
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)
.
Lancet
1998
;
352
:
837
853
16.
Patel
A
,
MacMahon
S
,
Chalmers
J
, et al.;
ADVANCE Collaborative Group
.
Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes
.
N Engl J Med
2008
;
358
:
2560
2572
17.
Ismail-Beigi
F
,
Craven
T
,
Banerji
MA
, et al.;
ACCORD Trial Group
.
Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial
.
Lancet
2010
;
376
:
419
430
18.
Skupien
J
,
Warram
JH
,
Smiles
A
,
Galecki
A
,
Stanton
RC
,
Krolewski
AS
.
Improved glycemic control and risk of ESRD in patients with type 1 diabetes and proteinuria
.
J Am Soc Nephrol
2014
;
25
:
2916
2925
19.
Lipska
KJ
,
Bailey
CJ
,
Inzucchi
SE
.
Use of metformin in the setting of mild-to-moderate renal insufficiency
.
Diabetes Care
2011
;
34
:
1431
1437
20.
Emdin
CA
,
Rahimi
K
,
Neal
B
,
Callender
T
,
Perkovic
V
,
Patel
A
.
Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis
.
JAMA
2015
;
313
:
603
615
21.
Cushman
WC
,
Evans
GW
,
Byington
RP
, et al.;
ACCORD Study Group
.
Effects of intensive blood-pressure control in type 2 diabetes mellitus
.
N Engl J Med
2010
;
362
:
1575
1585
22.
UK Prospective Diabetes Study Group
.
Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38
.
BMJ
1998
;
317
:
703
713
23.
Heart Outcomes Prevention Evaluation Study Investigators
.
Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy
.
Lancet
2000
;
355
:
253
259
24.
Pepine
CJ
,
Handberg
EM
,
Cooper-DeHoff
RM
, et al.;
INVEST Investigators
.
A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial
.
JAMA
2003
;
290
:
2805
2816
25.
Yusuf
S
,
Teo
KK
,
Pogue
J
, et al.;
ONTARGET Investigators
.
Telmisartan, ramipril, or both in patients at high risk for vascular events
.
N Engl J Med
2008
;
358
:
1547
1559
26.
Berl
T
,
Hunsicker
LG
,
Lewis
JB
, et al.;
Irbesartan Diabetic Nephropathy Trial. Collaborative Study Group
.
Cardiovascular outcomes in the Irbesartan Diabetic Nephropathy Trial of patients with type 2 diabetes and overt nephropathy
.
Ann Intern Med
2003
;
138
:
542
549
27.
Smart
NA
,
Dieberg
G
,
Ladhani
M
,
Titus
T
.
Early referral to specialist nephrology services for preventing the progression to end-stage kidney disease
.
Cochrane Database Syst Rev
2014
;
6
:
CD007333
28.
Klein
R
.
Hyperglycemia and microvascular and macrovascular disease in diabetes
.
Diabetes Care
1995
;
18
:
258
268
29.
Estacio
RO
,
McFarling
E
,
Biggerstaff
S
,
Jeffers
BW
,
Johnson
D
,
Schrier
RW
.
Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM
.
Am J Kidney Dis
1998
;
31
:
947
953
30.
Leske
MC
,
Wu
S-Y
,
Hennis
A
, et al.;
Barbados Eye Study Group
.
Hyperglycemia, blood pressure, and the 9-year incidence of diabetic retinopathy: the Barbados Eye Studies
.
Ophthalmology
2005
;
112
:
799
805
31.
Chew
EY
,
Davis
MD
,
Danis
RP
, et al.;
Action to Control Cardiovascular Risk in Diabetes Eye Study Research Group
.
The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Eye Study
.
Ophthalmology
2014
;
121
:
2443
2451
32.
Chew
EY
,
Ambrosius
WT
,
Davis
MD
, et al.;
ACCORD Study Group
;
ACCORD Eye Study Group
.
Effects of medical therapies on retinopathy progression in type 2 diabetes
.
N Engl J Med
2010
;
363
:
233
244
33.
Fong
DS
,
Aiello
LP
,
Ferris
FL
 3rd
,
Klein
R
.
Diabetic retinopathy
.
Diabetes Care
2004
;
27
:
2540
2553
34.
Diabetes Control and Complications Trial Research Group
.
Effect of pregnancy on microvascular complications in the diabetes control and complications trial
.
Diabetes Care
2000
;
23
:
1084
1091
35.
Agardh
E
,
Tababat-Khani
P
.
Adopting 3-year screening intervals for sight-threatening retinal vascular lesions in type 2 diabetic subjects without retinopathy
.
Diabetes Care
2011
;
34
:
1318
1319
36.
Bragge
P
,
Gruen
RL
,
Chau
M
,
Forbes
A
,
Taylor
HR
.
Screening for presence or absence of diabetic retinopathy: a meta-analysis
.
Arch Ophthalmol
2011
;
129
:
435
444
37.
Ahmed
J
,
Ward
TP
,
Bursell
S-E
,
Aiello
LM
,
Cavallerano
JD
,
Vigersky
RA
.
The sensitivity and specificity of nonmydriatic digital stereoscopic retinal imaging in detecting diabetic retinopathy
.
Diabetes Care
2006
;
29
:
2205
2209
38.
Hooper
P
,
Boucher
MC
,
Cruess
A
, et al
.
Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of diabetic retinopathy
.
Can J Ophthalmol
2012
;
47
(
Suppl. 2
):
S1
S30
, S31–S54
39.
Axer-Siegel
R
,
Hod
M
,
Fink-Cohen
S
, et al
.
Diabetic retinopathy during pregnancy
.
Ophthalmology
1996
;
103
:
1815
1819
40.
Best
RM
,
Chakravarthy
U
.
Diabetic retinopathy in pregnancy
.
Br J Ophthalmol
1997
;
81
:
249
251
41.
Gunderson
EP
,
Lewis
CE
,
Tsai
A-L
, et al
.
A 20-year prospective study of childbearing and incidence of diabetes in young women, controlling for glycemia before conception: the Coronary Artery Risk Development in Young Adults (CARDIA) study
.
Diabetes
2007
;
56
:
2990
2996
42.
The Diabetic Retinopathy Study Research Group
.
Preliminary report on effects of photocoagulation therapy
.
Am J Ophthalmol
1976
;
81
:
383
396
43.
Early Treatment Diabetic Retinopathy Study Research Group
.
Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1
.
Arch Ophthalmol
1985
;
103
:
1796
1806
44.
Elman
MJ
,
Aiello
LP
,
Beck
RW
, et al.;
Diabetic Retinopathy Clinical Research Network
.
Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema
.
Ophthalmology
2010
;
117
:
1064
1077.e35
45.
Mitchell
P
,
Bandello
F
,
Schmidt-Erfurth
U
, et al.;
RESTORE Study Group
.
The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema
.
Ophthalmology
2011
;
118
:
615
625
46.
Elman
MJ
,
Bressler
NM
,
Qin
H
, et al.;
Diabetic Retinopathy Clinical Research Network
.
Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema
.
Ophthalmology
2011
;
118
:
609
614
47.
Nguyen
QD
,
Brown
DM
,
Marcus
DM
, et al.;
RISE and RIDE Research Group
.
Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE
.
Ophthalmology
2012
;
119
:
789
801
48.
Ang
L
,
Jaiswal
M
,
Martin
C
,
Pop-Busui
R
.
Glucose control and diabetic neuropathy: lessons from recent large clinical trials
.
Curr Diab Rep
2014
;
14
:
528
49.
Martin
CL
,
Albers
JW
,
Pop-Busui
R
;
DCCT/EDIC Research Group
.
Neuropathy and related findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study
.
Diabetes Care
2014
;
37
:
31
38
50.
Bril
V
,
England
J
,
Franklin
GM
, et al.;
American Academy of Neurology; American Association of Neuromuscular and Electrodiagnostic Medicine; American Academy of Physical Medicine and Rehabilitation
.
Evidence-based guideline: treatment of painful diabetic neuropathy: report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation
.
Neurology
2011
;
76
:
1758
1765
51.
Freeman
R
.
Not all neuropathy in diabetes is of diabetic etiology: differential diagnosis of diabetic neuropathy
.
Curr Diab Rep
2009
;
9
:
423
431
52.
Pop-Busui
R
,
Evans
GW
,
Gerstein
HC
, et al.;
Action to Control Cardiovascular Risk in Diabetes Study Group
.
Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial
.
Diabetes Care
2010
;
33
:
1578
1584
53.
Young
LH
,
Wackers
FJT
,
Chyun
DA
, et al.;
DIAD Investigators
.
Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial
.
JAMA
2009
;
301
:
1547
1555
54.
U.S. Food and Drug Administration. FDA approves breath test to aid in diagnosis of delayed gastric emptying [Internet], 2015. Available from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm441370.htm. Accessed 28 July 2015
55.
Diabetes Control and Complications Trial (DCCT) Research Group
.
Effect of intensive diabetes treatment on nerve conduction in the Diabetes Control and Complications Trial
.
Ann Neurol
1995
;
38
:
869
880
56.
Diabetes Control and Complications Trial Research Group
.
The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT)
.
Diabetologia
1998
;
41
:
416
423
57.
Albers
JW
,
Herman
WH
,
Pop-Busui
R
, et al.;
Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group
.
Effect of prior intensive insulin treatment during the Diabetes Control and Complications Trial (DCCT) on peripheral neuropathy in type 1 diabetes during the Epidemiology of Diabetes Interventions and Complications (EDIC) Study
.
Diabetes Care
2010
;
33
:
1090
1096
58.
Pop-Busui
R
,
Low
PA
,
Waberski
BH
, et al.;
DCCT/EDIC Research Group
.
Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC)
.
Circulation
2009
;
119
:
2886
2893
59.
Callaghan
BC
,
Little
AA
,
Feldman
EL
,
Hughes
RA
.
Enhanced glucose control for preventing and treating diabetic neuropathy
.
Cochrane Database Syst Rev
2012
;
6
:
CD007543
60.
Riddle
MC
,
Ambrosius
WT
,
Brillon
DJ
, et al.;
Action to Control Cardiovascular Risk in Diabetes Investigators
.
Epidemiologic relationships between A1C and all-cause mortality during a median 3.4-year follow-up of glycemic treatment in the ACCORD trial
.
Diabetes Care
2010
;
33
:
983
990
61.
Sadosky
A
,
Schaefer
C
,
Mann
R
, et al
.
Burden of illness associated with painful diabetic peripheral neuropathy among adults seeking treatment in the US: results from a retrospective chart review and cross-sectional survey
.
Diabetes Metab Syndr Obes
2013
;
6
:
79
92
62.
Snedecor
SJ
,
Sudharshan
L
,
Cappelleri
JC
,
Sadosky
A
,
Mehta
S
,
Botteman
M
.
Systematic review and meta-analysis of pharmacological therapies for painful diabetic peripheral neuropathy
.
Pain Pract
2014
;
14
:
167
184
63.
Boulton
AJM
,
Vinik
AI
,
Arezzo
JC
, et al.;
American Diabetes Association
.
Diabetic neuropathies: a statement by the American Diabetes Association
.
Diabetes Care
2005
;
28
:
956
962
64.
Griebeler
ML
,
Morey-Vargas
OL
,
Brito
JP
, et al
.
Pharmacologic interventions for painful diabetic neuropathy: an umbrella systematic review and comparative effectiveness network meta-analysis
.
Ann Intern Med
2014
;
161
:
639
649
65.
Ziegler
D
,
Fonseca
V
.
From guideline to patient: a review of recent recommendations for pharmacotherapy of painful diabetic neuropathy
.
J Diabetes Complications
2015
;
29
:
146
156
66.
U.S. Food and Drug Administration
. FDA requires boxed warning and risk mitigation strategy for metoclopramide-containing drugs [Internet], 2009. Available from http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm149533.htm. Accessed 6 July 2015
67.
Boulton
AJM
,
Armstrong
DG
,
Albert
SF
, et al.;
American Diabetes Association; American Association of Clinical Endocrinologists
.
Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the American Diabetes Association, with endorsement by the American Association of Clinical Endocrinologists
.
Diabetes Care
2008
;
31
:
1679
1685
68.
American Diabetes Association
.
Peripheral arterial disease in people with diabetes
.
Diabetes Care
2003
;
26
:
3333
3341
69.
Lipsky
BA
,
Berendt
AR
,
Cornia
PB
, et al.;
Infectious Diseases Society of America
.
2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections
.
Clin Infect Dis
2012
;
54
:
e132
e173