For guidelines related to screening for increased risk for type 2 diabetes (prediabetes), please refer to Section 2Classification and Diagnosis of Diabetes.

Recommendations

  • At least annual monitoring for the development of diabetes in those with prediabetes is suggested. E

  • Patients with prediabetes should be referred to an intensive behavioral lifestyle intervention program modeled on the Diabetes Prevention Program to achieve and maintain 7% loss of initial body weight and increase moderate-intensity physical activity (such as brisk walking) to at least 150 min/week. A

  • Technology-assisted tools including Internet-based social networks, distance learning, DVD-based content, and mobile applications may be useful elements of effective lifestyle modification to prevent diabetes. B

  • Given the cost-effectiveness of diabetes prevention, such intervention programs should be covered by third-party payers. B

Screening for prediabetes and type 2 diabetes through an informal assessment of risk factors (Table 2.3) or with an assessment tool, such as the American Diabetes Association risk test (Fig. 2.1), is recommended to guide providers on whether performing a diagnostic test for prediabetes (Table 2.4) and previously undiagnosed type 2 diabetes (Table 2.2) is appropriate (see Section 2 “Classification and Diagnosis of Diabetes”). Those determined to be at high risk for type 2 diabetes, including people with A1C 5.7–6.4% (39–47 mmol/mol), impaired glucose tolerance, or impaired fasting glucose, are ideal candidates for diabetes prevention efforts. At least annual monitoring for the development of diabetes in those with prediabetes is suggested.

The Diabetes Prevention Program

The strongest evidence for diabetes prevention comes from the Diabetes Prevention Program (DPP) (1). The DPP demonstrated that an intensive lifestyle intervention could reduce the incidence of type 2 diabetes by 58% over 3 years. Follow-up of three large studies of lifestyle intervention for diabetes prevention has shown sustained reduction in the rate of conversion to type 2 diabetes: 43% reduction at 20 years in the Da Qing study (2), 43% reduction at 7 years in the Finnish Diabetes Prevention Study (DPS) (1), and 34% reduction at 10 years in the U.S. Diabetes Prevention Program Outcomes Study (DPPOS) (3).

The two major goals of the DPP intensive, behavioral, lifestyle intervention were to achieve and maintain a minimum of 7% weight loss and 150 min of physical activity per week similar in intensity to brisk walking. The DPP lifestyle intervention was a goal-based intervention: all participants were given the same weight loss and physical activity goals, but individualization was permitted in the specific methods used to achieve the goals (4).

The 7% weight loss goal was selected because it was feasible to achieve and maintain and likely to lessen the risk of developing diabetes. Participants were encouraged to achieve the 7% weight loss during the first 6 months of the intervention. The recommended pace of weight loss was 1–2 lb/week. Calorie goals were calculated by estimating the daily calories needed to maintain the participant’s initial weight and subtracting 500–1,000 calories/day (depending on initial body weight). The initial focus was on reducing total dietary fat. After several weeks, the concept of calorie balance and the need to restrict calories as well as fat was introduced (4).

The goal for physical activity was selected to approximate at least 700 kcal/week expenditure from physical activity. For ease of translation, this goal was described as at least 150 min of moderate-intensity physical activity per week similar in intensity to brisk walking. Participants were encouraged to distribute their activity throughout the week with a minimum frequency of three times per week with at least 10 min per session. A maximum of 75 min of strength training could be applied toward the total 150 min/week physical activity goal (4).

To implement the weight loss and physical activity goals, the DPP used an individual model of treatment rather than a group-based approach. This choice was based on a desire to intervene before participants had the possibility of developing diabetes or losing interest in the program. The individual approach also allowed for tailoring of interventions to reflect the diversity of the population (4).

The DPP intervention was administered as a structured core curriculum followed by a more flexible maintenance program of individual sessions, group classes, motivational campaigns, and restart opportunities. The 16-session core curriculum was completed within the first 24 weeks of the program and included sections on lowering calories, increasing physical activity, self-monitoring, maintaining healthy lifestyle behaviors, and psychological, social, and motivational challenges. For further details on the core curriculum sessions, refer to ref. 4.

Nutrition

Reducing caloric intake is of paramount importance for those at high risk for developing type 2 diabetes, though recent evidence suggests that the quality of fats consumed in the diet is more important than the total quantity of dietary fat (57). For example, the Mediterranean diet, which is relatively high in monounsaturated fats, may help to prevent type 2 diabetes (810).

Whereas overall healthy low-calorie eating patterns should be encouraged, there is also some evidence that particular dietary components impact diabetes risk. Data suggest that whole grains may help to prevent type 2 diabetes (11). Higher intakes of nuts (12), berries (13), yogurt (14), coffee, and tea (15) are associated with reduced diabetes risk. Conversely, red meats and sugar-sweetened beverages are associated with an increased risk of type 2 diabetes (6).

As is the case for those with diabetes, individualized medical nutrition therapy (see Section 4 “Lifestyle Management” for more detailed information) is effective in lowering A1C in individuals diagnosed with prediabetes (16).

Physical Activity

Just as 150 min/week of moderate-intensity physical activity, such as brisk walking, showed beneficial effects in those with prediabetes (17), moderate-intensity physical activity has been shown to improve insulin sensitivity and reduce abdominal fat in children and young adults (18,19). On the basis of these findings, providers are encouraged to promote a DPP-style program, including its focus on physical activity, to all individuals who have been identified to be at an increased risk of type 2 diabetes. In addition to aerobic activity, an exercise regimen designed to prevent diabetes may include resistance training (1,20). Breaking up prolonged sedentary time may also be encouraged, as it is associated with moderately lower postprandial glucose levels (21,22). The preventative effects of exercise appear to extend to the prevention of gestational diabetes mellitus (GDM) (23).

Technology Assistance to Deliver Lifestyle Interventions

New information technology platforms may effectively deliver the core components of the DPP (2426). Initial studies have validated DVD-based content delivery (27). This has been corroborated in a primary care patient population (28). Recent studies support content delivery through virtual small groups (29), Internet-driven social networks (30,31), cellular phones, and other mobile devices. Mobile applications for weight loss and diabetes prevention have been validated for their ability to reduce A1C in the setting of prediabetes (31). The Centers for Disease Control and Prevention (CDC) Diabetes Prevention Recognition Program (DPRP) (http://www.cdc.gov/diabetes/prevention/recognition/index.htm) has begun to certify electronic and mobile health-based modalities as effective vehicles for DPP-based interventions that may be considered alongside more traditional face-to-face and coach-driven programs. A recent study showed that an all-mobile approach to administering DPP content can be effective as a prevention tool, at least over the short term, in overweight and obese individuals at high risk for diabetes (32).

Cost-effectiveness

A cost-effectiveness model suggested that the lifestyle intervention used in the DPP was cost-effective (33). Actual cost data from the DPP and DPPOS confirmed this (34). Group delivery of DPP content in community settings has the potential to reduce overall program costs while still producing weight loss and diabetes risk reduction (35,36). The CDC helps to coordinate the National Diabetes Prevention Program, a resource designed to bring evidence-based lifestyle change programs for preventing type 2 diabetes to communities (http://www.cdc.gov/diabetes/prevention/index.htm). On 7 July 2016, the Centers for Medicare and Medicaid Services (CMS) proposed expanded Medicare reimbursement coverage for DPP programs in an effort to expand preventive services using a cost-effective model (https://www.cms.gov/site-search/search-results.html?q=diabetes%20prevention).

Recommendations

  • Metformin therapy for prevention of type 2 diabetes should be considered in those with prediabetes, especially for those with BMI ≥35 kg/m2, those aged <60 years, women with prior gestational diabetes mellitus, and/or those with rising A1C despite lifestyle intervention. A

  • Long-term use of metformin may be associated with biochemical vitamin B12 deficiency, and periodic measurement of vitamin B12 levels should be considered in metformin-treated patients, especially in those with anemia or peripheral neuropathy. B

Pharmacologic agents including metformin, α-glucosidase inhibitors, orlistat, glucagon-like peptide 1 (GLP-1) receptor agonists, and thiazolidinediones have each been shown to decrease incident diabetes to various degrees in those with prediabetes. Metformin has the strongest evidence base and demonstrated long-term safety as pharmacologic therapy for diabetes prevention (37). For other drugs, cost, side effects, and durable efficacy require consideration.

Metformin was less effective than lifestyle modification in the DPP and DPPOS but may be cost-saving over a 10-year period (34). It was as effective as lifestyle modification in participants with BMI ≥35 kg/m2 but not significantly better than placebo in those over 60 years of age (17). In the DPP, for women with history of GDM, metformin and intensive lifestyle modification led to an equivalent 50% reduction in diabetes risk (38), and both interventions remained highly effective during a 10-year follow-up period (39). Metformin should be recommended as an option for high-risk individuals (e.g., those with a history of GDM, those who are very obese, and/or those with relatively more hyperglycemia) and/or those with rising A1C despite lifestyle intervention. Consider monitoring B12 levels in those taking metformin chronically to check for possible deficiency (see Section 8 “Pharmacologic Approaches to Glycemic Treatment” for more details).

Recommendation

  • Screening for and treatment of modifiable risk factors for cardiovascular disease is suggested for those with prediabetes. B

People with prediabetes often have other cardiovascular risk factors, including hypertension and dyslipidemia, and are at increased risk for cardiovascular disease (40). Although treatment goals for people with prediabetes are the same as for the general population, increased vigilance is warranted to identify and treat these and other cardiovascular risk factors (e.g., smoking).

Recommendation

  • Diabetes self-management education and support programs may be appropriate venues for people with prediabetes to receive education and support to develop and maintain behaviors that can prevent or delay the development of diabetes. B

As for those with established diabetes, the standards for diabetes self-management education and support (see Section 4 “Lifestyle Management”) can also apply to people with prediabetes. Currently, there are significant barriers to the provision of education and support to those with prediabetes. However, the strategies for supporting successful behavior change, and the healthy behaviors recommended for people with prediabetes are comparable to those for diabetes. Although reimbursement remains a barrier, studies show that providers of diabetes self-management education and support are particularly well equipped to assist people with prediabetes in developing and maintaining behaviors that can prevent or delay the development of diabetes (16,41).

Suggested citation: American Diabetes Association. Prevention or delay of type 2 diabetes. Sec. 5. In Standards of Medical Care in Diabetes—2017. Diabetes Care 2017;40(Suppl. 1):S44–S47

1.
Lindström
J
,
Ilanne-Parikka
P
,
Peltonen
M
, et al.;
Finnish Diabetes Prevention Study Group
.
Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study
.
Lancet
2006
;
368
:
1673
1679
2.
Li
G
,
Zhang
P
,
Wang
J
, et al
.
The long-term effect of lifestyle interventions to prevent diabetes in the China Da Qing Diabetes Prevention Study: a 20-year follow-up study
.
Lancet
2008
;
371
:
1783
1789
3.
Knowler
WC
,
Fowler
SE
,
Hamman
RF
, et al.;
Diabetes Prevention Program Research Group
.
10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study
.
Lancet
2009
;
374
:
1677
1686
4.
Diabetes Prevention Program (DPP) Research Group
.
The Diabetes Prevention Program (DPP): description of lifestyle intervention
.
Diabetes Care
2002
;
25
:
2165
2171
5.
Jacobs
S
,
Harmon
BE
,
Boushey
CJ
, et al
.
A priori-defined diet quality indexes and risk of type 2 diabetes: the Multiethnic Cohort
.
Diabetologia
2015
;
58
:
98
112
6.
Ley
SH
,
Hamdy
O
,
Mohan
V
,
Hu
FB
.
Prevention and management of type 2 diabetes: dietary components and nutritional strategies
.
Lancet
2014
;
383
:
1999
2007
7.
Chiuve
SE
,
Fung
TT
,
Rimm
EB
, et al
.
Alternative dietary indices both strongly predict risk of chronic disease
.
J Nutr
2012
;
142
:
1009
1018
8.
Salas-Salvadó
J
,
Bulló
M
,
Babio
N
, et al.;
PREDIMED Study Investigators
.
Reduction in the incidence of type 2 diabetes with the Mediterranean diet: results of the PREDIMED-Reus nutrition intervention randomized trial
.
Diabetes Care
2011
;
34
:
14
19
9.
Salas-Salvadó
J
,
Guasch-Ferré
M
,
Lee
CH
,
Estruch
R
,
Clish
CB
,
Ros
E
.
Protective effects of the Mediterranean diet on type 2 diabetes and metabolic syndrome
.
J Nutr
2016
;
jn218487
10.
Bloomfield
HE
,
Koeller
E
,
Greer
N
,
MacDonald
R
,
Kane
R
,
Wilt
TJ
.
Effects on health outcomes of a Mediterranean diet with no restriction on fat intake: a systematic review and meta-analysis
.
Ann Intern Med
2016
;
165
:
491
500
11.
Montonen
J
,
Knekt
P
,
Järvinen
R
,
Aromaa
A
,
Reunanen
A
.
Whole-grain and fiber intake and the incidence of type 2 diabetes
.
Am J Clin Nutr
2003
;
77
:
622
629
12.
Afshin
A
,
Micha
R
,
Khatibzadeh
S
,
Mozaffarian
D
.
Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis
.
Am J Clin Nutr
2014
;
100
:
278
288
13.
Mursu
J
,
Virtanen
JK
,
Tuomainen
T-P
,
Nurmi
T
,
Voutilainen
S
.
Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study
.
Am J Clin Nutr
2014
;
99
:
328
333
14.
Chen
M
,
Sun
Q
,
Giovannucci
E
, et al
.
Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis
.
BMC Med
2014
;
12
:
215
15.
Mozaffarian
D
.
Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review
.
Circulation
2016
;
133
:
187
225
16.
Parker
AR
,
Byham-Gray
L
,
Denmark
R
,
Winkle
PJ
.
The effect of medical nutrition therapy by a registered dietitian nutritionist in patients with prediabetes participating in a randomized controlled clinical research trial
.
J Acad Nutr Diet
2014
;
114
:
1739
1748
17.
Knowler
WC
,
Barrett-Connor
E
,
Fowler
SE
, et al.;
Diabetes Prevention Program Research Group
.
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
.
N Engl J Med
2002
;
346
:
393
403
18.
Fedewa
MV
,
Gist
NH
,
Evans
EM
,
Dishman
RK
.
Exercise and insulin resistance in youth: a meta-analysis
.
Pediatrics
2014
;
133
:
e163
e174
19.
Davis
CL
,
Pollock
NK
,
Waller
JL
, et al
.
Exercise dose and diabetes risk in overweight and obese children: a randomized controlled trial
.
JAMA
2012
;
308
:
1103
1112
20.
Sigal
RJ
,
Alberga
AS
,
Goldfield
GS
, et al
.
Effects of aerobic training, resistance training, or both on percentage body fat and cardiometabolic risk markers in obese adolescents: the healthy eating aerobic and resistance training in youth randomized clinical trial
.
JAMA Pediatr
2014
;
168
:
1006
1014
21.
Thorp
AA
,
Kingwell
BA
,
Sethi
P
,
Hammond
L
,
Owen
N
,
Dunstan
DW
.
Alternating bouts of sitting and standing attenuate postprandial glucose responses
.
Med Sci Sports Exerc
2014
;
46
:
2053
2061
22.
Healy
GN
,
Dunstan
DW
,
Salmon
J
, et al
.
Breaks in sedentary time: beneficial associations with metabolic risk
.
Diabetes Care
2008
;
31
:
661
666
23.
Russo
LM
,
Nobles
C
,
Ertel
KA
,
Chasan-Taber
L
,
Whitcomb
BW
.
Physical activity interventions in pregnancy and risk of gestational diabetes mellitus: a systematic review and meta-analysis
.
Obstet Gynecol
2015
;
125
:
576
582
24.
Levine
DM
,
Savarimuthu
S
,
Squires
A
,
Nicholson
J
,
Jay
M
.
Technology-assisted weight loss interventions in primary care: a systematic review
.
J Gen Intern Med
2015
;
30
:
107
117
25.
Allen
JK
,
Stephens
J
,
Patel
A
.
Technology-assisted weight management interventions: systematic review of clinical trials
.
Telemed J E Health
2014
;
20
:
1103
1120
26.
Oldenburg
B
,
Taylor
CB
,
O’Neil
A
,
Cocker
F
,
Cameron
LD
.
Using new technologies to improve the prevention and management of chronic conditions in populations
.
Annu Rev Public Health
2015
;
36
:
483
505
27.
Kramer
MK
,
Kriska
AM
,
Venditti
EM
, et al
.
A novel approach to diabetes prevention: evaluation of the Group Lifestyle Balance program delivered via DVD
.
Diabetes Res Clin Pract
2010
;
90
:
e60
e63
28.
Ma
J
,
Yank
V
,
Xiao
L
, et al
.
Translating the Diabetes Prevention Program lifestyle intervention for weight loss into primary care: a randomized trial
.
JAMA Intern Med
2013
;
173
:
113
121
29.
Azar
KM
,
Aurora
M
,
Wang
EJ
,
Muzaffar
A
,
Pressman
A
,
Palaniappan
LP
.
Virtual small groups for weight management: an innovative delivery mechanism for evidence-based lifestyle interventions among obese men
.
Transl Behav Med
2015
;
5
:
37
44
30.
Sepah
SC
,
Jiang
L
,
Peters
AL
.
Translating the Diabetes Prevention Program into an online social network: validation against CDC standards
.
Diabetes Educ
2014
;
40
:
435
443
31.
Sepah
SC
,
Jiang
L
,
Peters
AL
.
Long-term outcomes of a Web-based diabetes prevention program: 2-year results of a single-arm longitudinal study
.
J Med Internet Res
2015
;
17
:
e92
32.
Michaelides
A
,
Raby
C
,
Wood
M
,
Farr
K
,
Toro-Ramos
T
.
Weight loss efficacy of a novel mobile Diabetes Prevention Program delivery platform with human coaching
.
BMJ Open Diabetes Res Care
2016
;
4
:
e000264
33.
Herman
WH
,
Hoerger
TJ
,
Brandle
M
, et al.;
Diabetes Prevention Program Research Group
.
The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance
.
Ann Intern Med
2005
;
142
:
323
332
34.
Diabetes Prevention Program Research Group
.
The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS
.
Diabetes Care
2012
;
35
:
723
730
35.
Ackermann
RT
,
Finch
EA
,
Brizendine
E
,
Zhou
H
,
Marrero
DG
.
Translating the Diabetes Prevention Program into the community: the DEPLOY pilot study
.
Am J Prev Med
2008
;
35
:
357
363
36.
Balk
EM
,
Earley
A
,
Raman
G
,
Avendano
EA
,
Pittas
AG
,
Remington
PL
.
Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task
.
Ann Intern Med
2015
;
163
:
437
451
37.
Diabetes Prevention Program Research Group
.
Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study
.
Diabetes Care
2012
;
35
:
731
737
38.
Ratner
RE
,
Christophi
CA
,
Metzger
BE
, et al.;
Diabetes Prevention Program Research Group
.
Prevention of diabetes in women with a history of gestational diabetes: effects of metformin and lifestyle interventions
.
J Clin Endocrinol Metab
2008
;
93
:
4774
4779
39.
Aroda
VR
,
Christophi
CA
,
Edelstein
SL
, et al.;
Diabetes Prevention Program Research Group
.
The effect of lifestyle intervention and metformin on preventing or delaying diabetes among women with and without gestational diabetes: the Diabetes Prevention Program Outcomes Study 10-year follow-up
.
J Clin Endocrinol Metab
2015
;
100
:
1646
1653
40.
Ford
ES
,
Zhao
G
,
Li
C
.
Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence
.
J Am Coll Cardiol
2010
;
55
:
1310
1317
41.
Butcher
MK
,
Vanderwood
KK
,
Hall
TO
,
Gohdes
D
,
Helgerson
SD
,
Harwell
TS
.
Capacity of diabetes education programs to provide both diabetes self-management education and to implement diabetes prevention services
.
J Public Health Manag Pract
2011
;
17
:
242
247
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.