OBJECTIVE

To determine associations of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with new-onset coronary artery disease (CAD) or cerebrovascular disease (CVD) according to glucose status.

RESEARCH DESIGN AND METHODS

Examined was a nationwide claims database from 2008 to 2016 on 593,196 individuals. A Cox proportional hazards model identified risks of CAD and CVD events among five levels of SBP and DBP.

RESULTS

During the study period 2,240 CAD and 3,207 CVD events occurred. Compared with SBP ≤119 mmHg, which was the lowest quintile of SBP, hazard ratios (95% CI) for CAD/CVD in the 4 higher quintiles (120–129, 130–139, 140–149, ≥150 mmHg) gradually increased from 2.10 (1.73–2.56)/1.46 (1.27–1.68) in quintile 2 to 3.21 (2.37–4.34)/4.76 (3.94–5.75) in quintile 5 for normoglycemia, from 1.39 (1.14–1.69)/1.70 (1.44–2.01) in quintile 2 to 2.52 (1.95–3.26)/4.12 (3.38–5.02) in quintile 5 for borderline glycemia, and from 1.50 (1.19–1.90)/1.72 (1.31–2.26) in quintile 2 to 2.52 (1.95–3.26)/3.54 (2.66–4.70) in quintile 5 for diabetes. A similar trend was observed for DBP across 4 quintiles (75–79, 80–84, 85–89, and ≥90 mmHg) compared with ≥74 mmHg, which was the lowest quintile.

CONCLUSIONS

Results indicated that cardiovascular risks gradually increased with increases in SBP and DBP regardless of the presence of and degree of a glucose abnormality. Further interventional trials are required to apply findings from this cohort study to clinical practice.

Cardiovascular disease, which consists of coronary artery disease (CAD) and cerebrovascular disease (CVD), is a major cause of death worldwide, including Japan. High blood pressure (BP) is a well-known strong risk factor for cardiovascular disease. A previous Japanese cohort study, NIPPON DATA 80, showed a dose-response relation between systolic BP (SBP) levels and cardiovascular risks: cardiovascular mortality increased with higher quintiles of SBP (<120, 120–139, 140–159, 160–179, ≥180 mmHg) and diastolic BP (DBP) (<80, 80–84, 85–89, 90–99, ≥100 mmHg) (1). However, that study did not examine the relationship according to glucose status (i.e., normoglycemia, borderline glycemia, and diabetes).

The target of optimal BP is different between hypertensive patients with and without diabetes, and it was established that treatment of hypertension reduces cardiovascular mortality (26). A previous meta-analysis (4) indicated that achieving SBP <140 mmHg reduces cardiovascular events both in the presence and absence of diabetes, and further benefit was seen in the absence of diabetes at SBP <130 mmHg. In particular, the Systolic Blood Pressure Intervention Trial (SPRINT) study indicated that intensive treatment with a target SBP of <120 mmHg was associated with a 25% reduction in major cardiovascular events compared with standard treatment with an SBP target of <140 mmHg (2). However, the meta-analysis indicated little benefit in lowering SBP <130 mmHg in those with diabetes (6). Also, the BP target is entirely unknown in patients with hypertension and borderline glycemia (7,8). Those findings suggest that the association of BP with cardiovascular risk should be examined by glucose status.

Furthermore, the association of DBP with cardiovascular risks according to glucose status is entirely unknown, although, unlike SBP, DBP was not an independent risk factor for cardiovascular disease in an Asian population (1). Therefore, our cohort study aimed to determine the associations of SBP and DBP with the incidence of CAD and CVD according to glucose status.

Study Participants

The current study analyzed data from a nationwide claims-based database that included information on 805,992 people enrolled with a health insurance provider for company employees and their dependents in Japan (9). Details of the claims data and classifications were described elsewhere (10,11). Individuals aged 18–64 years who were monitored for at least 3 years, from 1 April 2008 to 31 July 2016, were included in this analysis and continued to be monitored until 31 August 2019. Excluded were those with CAD or CVD at baseline, with type 1 diabetes, and with no health examination data including those on blood tests. Finally, this study included 589,501 individuals with no prior CAD and 593,196 individuals with no prior CVD (380,812/382,332 normoglycemia; 172,151/173,376 borderline glycemia; 36,538/37,488 diabetes). The Niigata University Ethics Committee approved this study.

Definitions

Participants were classified as having normoglycemia, borderline glycemia, or diabetes defined by fasting plasma glucose (FPG), HbA1c, and claims database data as follows: normoglycemia, both FPG <5.6 mmol/L and HbA1c <5.7% (39 mmol/mol) and no antidiabetic drug prescription; borderline glycemia defined by FPG 5.6–6.9 mmol/L or HbA1c 5.7–6.4 (39–46 mmol/mol), or both, and no antidiabetic drug prescription; and diabetes, FPG ≥7.0 mmol/L or HbA1c ≥6.5% (47 mmol/mol), or both, or with an antidiabetic drug prescription regardless of FPG or HbA1c (12). The value for HbA1c is that used by the NGSP (13).

All facilities measured BP in accordance with the guidelines of the Japanese Society of Hypertension (14). For medical checkups, these guidelines recommended measurement of BP twice by the oscillometric method and averaging the results. Current smoking information was obtained from the questionnaire. The presence of CAD was determined according to claims using the ICD-10 codes for cardiac events but excluding heart failure and procedure codes for medical interventions, such as percutaneous coronary intervention (PCI) and coronary artery bypass grafting after 1 month of follow-up. The presence of CVD was determined according to claims using the ICD-10 codes for cerebrovascular events and procedure codes for medical interventions, such as thrombolytic therapy and endovascular recanalization after a 1-month follow-up.

Statistical Analysis

Categorical variables are expressed as numbers and percentages and were compared with χ2 tests. Continuous variables are expressed as median (interquartile range) and were compared using the unpaired Student t test if the normal distribution could be assumed by the Kolmogorov-Smirnov test; otherwise, the Mann-Whitney U test was used.

Unadjusted overall time to the incidence of CAD or CVD was indicated by Kaplan-Meier analysis with log-rank testing. A Cox proportional hazards regression model identified the associations of SBP with the incidence of CAD or CVD according to glucose status. Covariates included age, sex, current smoking (yes or no), BMI, LDL-cholesterol, HDL-cholesterol, and antihypertensive drug therapy (yes or no). Data were compared among 15 groups of participants divided according to combinations of glucose status and five stratified levels of SBP (i.e., ≤119, 120–129, 130–139, 140–149, and ≥150 mmHg) or DBP (i.e., ≤74, 75–79, 80–84, 85–89, and ≥90 mmHg). Analyses were performed using SPSS 19 software (IBM, Armonk, NY). Statistical significance was initially set at two-sided P = 0.05 and adjusted for multiple comparison by applying the Bonferroni comparison.

Baseline Characteristics

Baseline characteristics of study participants with and without CAD/CVD according to glycemic status are shown in Tables 1 and 2. Among 589,501/593,196 participants with no prior CAD/CVD, 380,812/382,332, 172,151/173,376, and 36,538/37,488 had normoglycemia, borderline glycemia, and diabetes, respectively. The proportion of participants with SBP <130 mmHg was 84% for normoglycemia, 71% for borderline glycemia, and 53% for diabetes. Of participants with SBP <120 mmHg, 61% had normoglycemia, 45% had borderline glycemia, and 26% had diabetes. The worse the glucose tolerance, the lower the proportion of achievement of the BP control target (Supplementary Fig. 2). The medium follow-up period was 5.2 years.

Table 1

Baseline characteristics of study participants with and without incidence of CAD according to glucose status

NGT (n = 380,812)Border (n = 172,151)Diabetes (n = 36,538)
CharacteristicsTotal N = 589,501CAD (−) n = 380,079CAD (+) n = 733P valueCAD (−) n = 171,355CAD (+) n = 796P valueCAD (−) n = 35,827CAD (+) n = 711P value
Age (years) 44 (40-51) 42 (38-49) 51 (45-56) <0.001 48 (42-54) 52 (47-57) <0.001 52 (46-57) 53 (47-57) <0.001 
Sex (male) 354,401 (59) 205,308 (54) 684 (93) <0.001 113,691 (66) 751 (94) <0.001 29,290 (82) 677 (95) <0.001 
BMI (kg/m222.3 (20.2-24.7) 21.7 (19.8-23.9) 23.6 (21.9-25.7) <0.001 23.2 (21.1-25.7) 24.8 (23.1-27.0) <0.001 25.7 (23.1-28.8) 25.8 (23.6-28.6) 0.219 
Current smoking 154,404 (26) 92,686 (24) 354 (48) <0.001 47,580 (28) 406 (51) <0.001 12,989 (36) 389 (55) <0.001 
SBP (mmHg) 118 (107-128) 115 (105-125) 128 (120-137) <0.001 121 (111-131) 129 (120-139) <0.001 128 (119-139) 133 (124-145) <0.001 
DBP (mmHg) 73 (65-81) 71 (64-79) 81 (74-88) <0.001 76 (68-84) 82 (75-90) <0.001 80 (73-88) 83 (76-90) <0.001 
HbA1c (%) 5.4 (5.2-5.7) 5.3 (5.1-5.5) 5.4 (5.2-5.5) <0.001 5.7 (5.5-5.9) 5.8 (5.7-6.0) <0.001 6.8 (6.4-7.5) 7.3 (6.6-8.4) <0.001 
LDL-cholesterol (mmol/L) 3.1 (2.6-3.6) 3.0 (2.5-3.5) 3.6 (3.1-4.1) <0.001 3.3 (2.7-3.8) 3.7 (3.2-4.3) <0.001 3.2 (2.7-3.8) 3.4 (2.9-4.1) <0.001 
HDL-cholesterol (mmol/L) 1.6 (1.3-1.9) 1.7 (1.4-1.9) 1.3 (1.2-1.6) <0.001 1.5 (1.3-1.8) 1.3 (1.1-1.5) <0.001 1.3 (1.1-1.6) 1.2 (1.0-1.4) <0.001 
Medication for diabetes 14,822 (2.5) — — — — — — 14,449 (40) 373 (52) <0.001 
Medication for hypertension 40,568 (6.9) 13,963 (3.7) 130 (18) <0.001 15,800 (9.2) 165 (21) <0.001 10,221 (29) 289 (41) <0.001 
Medication for dyslipidemia 29,789 (5.1) 8,915 (2.3) 70 (10) <0.001 11,165 (6.5) 113 (14) <0.001 9,291 (26) 235 (33) <0.001 
Medications           
 β-Blockers 4,802 (0.8) 1,482 (0.4) 16 (2.2) <0.001 2,025 (1.2) 22 (2.8) <0.001 1,208 (3.4) 49 (6.9) <0.001 
 ACEs and ARBs 29,127 (4.9) 9,621 (2.5) 84 (11.5) <0.001 11,023 (6.4) 120 (15.1) <0.001 8,047 (22.5) 232 (32.6) <0.001 
 CCBs 27,481 (4.7) 9,108 (2.4) 98 (13.4) <0.001 11,056 (6.5) 114 (14.3) <0.001 6,910 (19.3) 195 (27.4) <0.001 
 Diuretics 5,138 (0.9) 1,546 (0.4) 14 (1.9) <0.001 2,058 (1.2) 23 (2.9) <0.001 1,451 (4.1) 46 (6.5) 0.002 
 Statins 23,981 (4.1) 7,053 (1.9) 55 (7.5) <0.001 9,628 (5.4) 90 (11.3) <0.001 7,337 (20.5) 178 (25.0) 0.003 
 Antiplatelet agents 2,790 (0.5) 924 (0.2) 11 (1.5) <0.001 964 (0.6) 27 (3.4) <0.001 826 (2.3) 38 (5.3) <0.001 
 Oral hypoglycemic agents 14,494 (2.5) — — — — — — 14,130 (39.4) 364 (51.2) <0.001 
 Metformin 6,488 (1.1) — — — — — — 6,313 (17.6) 175 (24.6) <0.001 
 SGLT-2is 246 (0.04)       243 (0.7) 3 (0.4) — 
 GLP-1 RAs 120 (0.02) — — — — — — 119 (0.3) 1 (0.1) — 
 Insulin 1,120 (0.2) — — — — — — 1,077 (3.0) 43 (6.0) <0.001 
NGT (n = 380,812)Border (n = 172,151)Diabetes (n = 36,538)
CharacteristicsTotal N = 589,501CAD (−) n = 380,079CAD (+) n = 733P valueCAD (−) n = 171,355CAD (+) n = 796P valueCAD (−) n = 35,827CAD (+) n = 711P value
Age (years) 44 (40-51) 42 (38-49) 51 (45-56) <0.001 48 (42-54) 52 (47-57) <0.001 52 (46-57) 53 (47-57) <0.001 
Sex (male) 354,401 (59) 205,308 (54) 684 (93) <0.001 113,691 (66) 751 (94) <0.001 29,290 (82) 677 (95) <0.001 
BMI (kg/m222.3 (20.2-24.7) 21.7 (19.8-23.9) 23.6 (21.9-25.7) <0.001 23.2 (21.1-25.7) 24.8 (23.1-27.0) <0.001 25.7 (23.1-28.8) 25.8 (23.6-28.6) 0.219 
Current smoking 154,404 (26) 92,686 (24) 354 (48) <0.001 47,580 (28) 406 (51) <0.001 12,989 (36) 389 (55) <0.001 
SBP (mmHg) 118 (107-128) 115 (105-125) 128 (120-137) <0.001 121 (111-131) 129 (120-139) <0.001 128 (119-139) 133 (124-145) <0.001 
DBP (mmHg) 73 (65-81) 71 (64-79) 81 (74-88) <0.001 76 (68-84) 82 (75-90) <0.001 80 (73-88) 83 (76-90) <0.001 
HbA1c (%) 5.4 (5.2-5.7) 5.3 (5.1-5.5) 5.4 (5.2-5.5) <0.001 5.7 (5.5-5.9) 5.8 (5.7-6.0) <0.001 6.8 (6.4-7.5) 7.3 (6.6-8.4) <0.001 
LDL-cholesterol (mmol/L) 3.1 (2.6-3.6) 3.0 (2.5-3.5) 3.6 (3.1-4.1) <0.001 3.3 (2.7-3.8) 3.7 (3.2-4.3) <0.001 3.2 (2.7-3.8) 3.4 (2.9-4.1) <0.001 
HDL-cholesterol (mmol/L) 1.6 (1.3-1.9) 1.7 (1.4-1.9) 1.3 (1.2-1.6) <0.001 1.5 (1.3-1.8) 1.3 (1.1-1.5) <0.001 1.3 (1.1-1.6) 1.2 (1.0-1.4) <0.001 
Medication for diabetes 14,822 (2.5) — — — — — — 14,449 (40) 373 (52) <0.001 
Medication for hypertension 40,568 (6.9) 13,963 (3.7) 130 (18) <0.001 15,800 (9.2) 165 (21) <0.001 10,221 (29) 289 (41) <0.001 
Medication for dyslipidemia 29,789 (5.1) 8,915 (2.3) 70 (10) <0.001 11,165 (6.5) 113 (14) <0.001 9,291 (26) 235 (33) <0.001 
Medications           
 β-Blockers 4,802 (0.8) 1,482 (0.4) 16 (2.2) <0.001 2,025 (1.2) 22 (2.8) <0.001 1,208 (3.4) 49 (6.9) <0.001 
 ACEs and ARBs 29,127 (4.9) 9,621 (2.5) 84 (11.5) <0.001 11,023 (6.4) 120 (15.1) <0.001 8,047 (22.5) 232 (32.6) <0.001 
 CCBs 27,481 (4.7) 9,108 (2.4) 98 (13.4) <0.001 11,056 (6.5) 114 (14.3) <0.001 6,910 (19.3) 195 (27.4) <0.001 
 Diuretics 5,138 (0.9) 1,546 (0.4) 14 (1.9) <0.001 2,058 (1.2) 23 (2.9) <0.001 1,451 (4.1) 46 (6.5) 0.002 
 Statins 23,981 (4.1) 7,053 (1.9) 55 (7.5) <0.001 9,628 (5.4) 90 (11.3) <0.001 7,337 (20.5) 178 (25.0) 0.003 
 Antiplatelet agents 2,790 (0.5) 924 (0.2) 11 (1.5) <0.001 964 (0.6) 27 (3.4) <0.001 826 (2.3) 38 (5.3) <0.001 
 Oral hypoglycemic agents 14,494 (2.5) — — — — — — 14,130 (39.4) 364 (51.2) <0.001 
 Metformin 6,488 (1.1) — — — — — — 6,313 (17.6) 175 (24.6) <0.001 
 SGLT-2is 246 (0.04)       243 (0.7) 3 (0.4) — 
 GLP-1 RAs 120 (0.02) — — — — — — 119 (0.3) 1 (0.1) — 
 Insulin 1,120 (0.2) — — — — — — 1,077 (3.0) 43 (6.0) <0.001 

Data are presented as n (%) or median (interquartile range); International Federation of Clinical Chemistry and Laboratory Medicine units. ARBs, angiotensin II receptor blockers; Border, borderline glycemia; CCBs, calcium channel blockers; GLP1-RAs; glucagon-like peptide-1 receptor agonists; NGT, normoglycemia.

During the study period, 2,240 CAD and 3,207 CVD events occurred in the overall study population. Among participants with normoglycemia, borderline glycemia, and diabetes, 733, 796, and 711 CAD events and 1,478, 1,160, and 569 CVD events occurred, respectively. The incidence of CAD/CVD per 1,000 person-years was 0.34/0.69 for normoglycemia, 0.83/1.19 for borderline glycemia, and 3.52/2.74 for diabetes. The incidence of CAD/CVD per 1,000 person-years was 0.27/0.48 for individuals with SBP ≤119 mmHg, 0.80/1.02 for those with SBP 120–129 mmHg, 1.18/1.50 for those with SBP 130–139 mmHg, 1.78/2.26 for those with SBP 140–149 mmHg, and 2.49/4.04 for those with SBP ≥150 mmHg. The incidence of CAD/CVD per 1,000 person-years was 0.28/0.49 for participants with DBP ≤74 mmHg, 0.74/0.90 for those with DBP 75–79 mmHg, 1.02/1.26 for those with DBP 80–84 mmHg, 1.32/1.70 for those with DPB 85–89 mmHg, and 1.98/2.96 for those with DBP ≥90 mmHg.

Associations of SBP With CAD/CVD

Fig. 1A (left) and B (left) shows Kaplan-Meier curves for CAD/CVD according to five stratified SBP values and glycemic status. A linear relationship was observed between cumulative incidence rates and SBP categories across all glucose tolerance status designations using SBP ≤119 mmHg as the reference. Table 3 shows the adjusted hazard ratios (HRs) for the incidence of CAD/CVD according to five stratified SBP categories and all glycemic status designations. Generally, CAD/CVD risks were elevated with increases in BP categories regardless of glycemic status. Compared with SBP ≤119 mmHg, the relative risks (95% CIs) for CAD/CVD in the other 4 quintiles (120–129, 130–139, 140–149, and ≥150 mmHg) were 2.10 (1.73–2.56)/1.46 (1.27–1.68), 2.35 (1.89–2.92)/2.22 (1.91–2.58), 3.01 (2.31–3.93)/2.98 (2.46–3.60), and 3.21 (2.37–4.34)/4.76 (3.94–5.75) for normoglycemia, 1.39 (1.14– 1.69)/1.70 (1.44–2.10), 1.78 (1.45–2.18)/1.89 (1.58–2.25), 1.89 (1.48–2.43)/2.41 (1.95–2.96), and 2.52 (1.95–3.26)/4.12 (3.38–5.02) for borderline glycemia, and 1.50 (1.19–1.90)/1.72 (1.31–2.26), 1.46 (1.14–1.86)/1.56 (1.17–2.07), 1.83 (1.41–2.38)/1.99 (1.47–2.71), and 2.52 (1.95–3.26)/3.54 (2.66–4.70) for diabetes, respectively.

Figure 1

Kaplan-Meier analysis of unadjusted overall time to incidence of CAD (A) B, C, D, E, and F) and CVD (G, H, I, J, K, and L and CVD (B) according to combinations of glucose status and categories of SBP and DBP.

Figure 1

Kaplan-Meier analysis of unadjusted overall time to incidence of CAD (A) B, C, D, E, and F) and CVD (G, H, I, J, K, and L and CVD (B) according to combinations of glucose status and categories of SBP and DBP.

Close modal
Table 2

Baseline characteristics of study participants with and without incidence of CVD according to glucose status

NGT (n = 382,332)Border (n = 173,376)Diabetes (n = 37,488)
CharacteristicsTotal N = 593,196CVD (−) n = 380,854CVD (+) n = 1,478P valueCVD (−) n = 172,216CVD (+) n = 1,160P valueCVD (−) n = 36,919CVD (+) n = 569P value
Age (years) 45 (40-51) 42 (38-49) 49 (43-54) <0.001 48 (42-54) 52 (46-57) <0.001 52 (46-57) 54 (49-58) <0.001 
Sex (male) 353,615 (60) 206,171 (54) 989 (67) <0.001 114,671 (67) 885 (76) <0.001 30,395 (82) 504 (89) <0.001 
BMI (kg/m222.3 (20.2-24.8) 21.7 (19.8-23.9) 22.6 (20.6-24.9) <0.001 23.3 (21.1-25.7) 23.9 (22.0-26.3) <0.001 25.7 (23.2-28.9) 25.8 (23.3-28.5) 0.854 
Current smoking 155,515 (26) 92,987 (24) 525 (36) <0.001 47,926 (28) 459 (40) <0.001 13,352 (36) 266 (47) <0.001 
SBP (mmHg) 118 (107-128) 115 (105-125) 126 (114-138) <0.001 121 (111-131) 129 (120-141) <0.001 128 (119-139) 135 (124-149) <0.001 
DBP (mmHg) 73 (65-81) 71 (64-79) 80 (71-89) <0.001 76 (68-84) 83 (75-90) <0.001 80 (73-88) 84 (76-90) <0.001 
HbA1c (%) 5.4 (5.2-5.7) 5.3 (5.1-5.5) 5.4 (5.2-5.5) <0.001 5.7 (5.5-5.9) 5.7 (5.6-5.9) <0.001 6.8 (6.4-7.6) 7.0 (6.4-8.2) <0.001 
LDL-cholesterol (mmol/L) 3.1 (2.6-3.6) 3.0 (2.5-3.5) 3.1 (2.6-3.7) <0.001 3.3 (2.7-3.8) 3.3 (2.8-3.9) 0.037 3.2 (2.7-3.8) 3.2 (2.6-3.8) 0.248 
HDL-cholesterol (mmol/L) 1.6 (1.3-1.9) 1.6 (1.4-1.9) 1.6 (1.3-1.9) <0.001 1.5 (1.3-1.8) 1.4 (1.2-1.7) <0.001 1.3 (1.1-1.6) 1.3 (1.1-1.6) <0.001 
Medication for diabetes 15,456 (2.6) — — — — — — 15,171 (41) 285 (50) <0.001 
Medication for hypertension 41,892 (7.1) 14,160 (3.7) 191 (13) <0.001 16,157 (9.4) 219 (19) <0.001 10,910 (30) 255 (45) <0.001 
Medication for dyslipidemia 31,077 (5.2) 9,103 (2.4) 76 (5.1) <0.001 11,546 (6.7) 137 (12) <0.001 10,031 (27) 184 (32) 0.006 
Medications           
 β-Blockers 5,776 (1.0) 1,715 (0.5) 29 (2.0) <0.001 2,330 (1.4) 38 (3.3) <0.001 1,617 (4.4) 47 (8.3) <0.001 
 ACEs and ARBs 29,964 (5.1) 9,660 (2.5) 126 (8.5) <0.001 11,214 (6.5) 145 (12.5) <0.001 8,608 (23.3) 211 (37.1) <0.001 
 CCBs 28,014 (4.7) 9,149 (2.4) 133 (9.0) <0.001 11,182 (6.5) 165 (14.2) <0.001 7,200 (19.5) 185 (32.5) <0.001 
 Diuretics 5,382 (0.9) 1,561 (0.4) 32 (2.2) <0.001 2,088 (1.2) 35 (3.0) <0.001 1,622 (4.4) 44 (7.7) <0.001 
 Statins 25,239 (4.3) 7,269 (1.9) 57 (3.9) <0.001 9,636 (5.6) 116 (10.0) <0.001 8,018 (21.7) 143 (25.1) 0.050 
 Antiplatelet agents 3,562 (0.6) 990 (0.3) 21 (1.4) <0.001 1,115 (0.6) 47 (4.1) <0.001 1,333 (3.6) 56 (9.8) <0.001 
 Oral hypoglycemic agents 15,106 (2.5) — — — — —  14,830 (40.2) 276 (48.5) <0.001 
 Metformin 6,741 (1.1) — — — — —  6,616 (17.9) 125 (22.0) 0.014 
 SGLT-2is 263 (0.04) — — — — —  257 (0.7) 6 (1.1) — 
 GLP-1 RAs 130 (0.02) — — — — —  126 (0.3) 4 (0.7) — 
 Insulin 1,188 (0.2) — — — — —  1,160 (3.1) 28 (4.9) 0.017 
NGT (n = 382,332)Border (n = 173,376)Diabetes (n = 37,488)
CharacteristicsTotal N = 593,196CVD (−) n = 380,854CVD (+) n = 1,478P valueCVD (−) n = 172,216CVD (+) n = 1,160P valueCVD (−) n = 36,919CVD (+) n = 569P value
Age (years) 45 (40-51) 42 (38-49) 49 (43-54) <0.001 48 (42-54) 52 (46-57) <0.001 52 (46-57) 54 (49-58) <0.001 
Sex (male) 353,615 (60) 206,171 (54) 989 (67) <0.001 114,671 (67) 885 (76) <0.001 30,395 (82) 504 (89) <0.001 
BMI (kg/m222.3 (20.2-24.8) 21.7 (19.8-23.9) 22.6 (20.6-24.9) <0.001 23.3 (21.1-25.7) 23.9 (22.0-26.3) <0.001 25.7 (23.2-28.9) 25.8 (23.3-28.5) 0.854 
Current smoking 155,515 (26) 92,987 (24) 525 (36) <0.001 47,926 (28) 459 (40) <0.001 13,352 (36) 266 (47) <0.001 
SBP (mmHg) 118 (107-128) 115 (105-125) 126 (114-138) <0.001 121 (111-131) 129 (120-141) <0.001 128 (119-139) 135 (124-149) <0.001 
DBP (mmHg) 73 (65-81) 71 (64-79) 80 (71-89) <0.001 76 (68-84) 83 (75-90) <0.001 80 (73-88) 84 (76-90) <0.001 
HbA1c (%) 5.4 (5.2-5.7) 5.3 (5.1-5.5) 5.4 (5.2-5.5) <0.001 5.7 (5.5-5.9) 5.7 (5.6-5.9) <0.001 6.8 (6.4-7.6) 7.0 (6.4-8.2) <0.001 
LDL-cholesterol (mmol/L) 3.1 (2.6-3.6) 3.0 (2.5-3.5) 3.1 (2.6-3.7) <0.001 3.3 (2.7-3.8) 3.3 (2.8-3.9) 0.037 3.2 (2.7-3.8) 3.2 (2.6-3.8) 0.248 
HDL-cholesterol (mmol/L) 1.6 (1.3-1.9) 1.6 (1.4-1.9) 1.6 (1.3-1.9) <0.001 1.5 (1.3-1.8) 1.4 (1.2-1.7) <0.001 1.3 (1.1-1.6) 1.3 (1.1-1.6) <0.001 
Medication for diabetes 15,456 (2.6) — — — — — — 15,171 (41) 285 (50) <0.001 
Medication for hypertension 41,892 (7.1) 14,160 (3.7) 191 (13) <0.001 16,157 (9.4) 219 (19) <0.001 10,910 (30) 255 (45) <0.001 
Medication for dyslipidemia 31,077 (5.2) 9,103 (2.4) 76 (5.1) <0.001 11,546 (6.7) 137 (12) <0.001 10,031 (27) 184 (32) 0.006 
Medications           
 β-Blockers 5,776 (1.0) 1,715 (0.5) 29 (2.0) <0.001 2,330 (1.4) 38 (3.3) <0.001 1,617 (4.4) 47 (8.3) <0.001 
 ACEs and ARBs 29,964 (5.1) 9,660 (2.5) 126 (8.5) <0.001 11,214 (6.5) 145 (12.5) <0.001 8,608 (23.3) 211 (37.1) <0.001 
 CCBs 28,014 (4.7) 9,149 (2.4) 133 (9.0) <0.001 11,182 (6.5) 165 (14.2) <0.001 7,200 (19.5) 185 (32.5) <0.001 
 Diuretics 5,382 (0.9) 1,561 (0.4) 32 (2.2) <0.001 2,088 (1.2) 35 (3.0) <0.001 1,622 (4.4) 44 (7.7) <0.001 
 Statins 25,239 (4.3) 7,269 (1.9) 57 (3.9) <0.001 9,636 (5.6) 116 (10.0) <0.001 8,018 (21.7) 143 (25.1) 0.050 
 Antiplatelet agents 3,562 (0.6) 990 (0.3) 21 (1.4) <0.001 1,115 (0.6) 47 (4.1) <0.001 1,333 (3.6) 56 (9.8) <0.001 
 Oral hypoglycemic agents 15,106 (2.5) — — — — —  14,830 (40.2) 276 (48.5) <0.001 
 Metformin 6,741 (1.1) — — — — —  6,616 (17.9) 125 (22.0) 0.014 
 SGLT-2is 263 (0.04) — — — — —  257 (0.7) 6 (1.1) — 
 GLP-1 RAs 130 (0.02) — — — — —  126 (0.3) 4 (0.7) — 
 Insulin 1,188 (0.2) — — — — —  1,160 (3.1) 28 (4.9) 0.017 

Data are presented as n (%), median (interquartile range); International Federation of Clinical Chemistry and Laboratory Medicine units. ARBs, angiotensin II receptor blockers; Border, borderline glycemia; CCBs, calcium channel blockers; GLP1-RAs; glucagon-like peptide-1 receptor agonists; NGT, normoglycemia.

Table 3

HRs for the incidence of CAD and CVD according to combinations of glucose status and SBP categories and DBP categories

NormoglycemiaBorderline glycemiaDiabetes
OutcomesEvents/nHR (95% CI)P valueEvents /nHR (95% CI)P valueEvents /nHR (95% CI)P value
CAD          
 SBP          
  ≤119 mmHg 182/233,180 1.00 (Ref.) — 191/77,526 1.00 (Ref.) — 115/9,560 1.00 (Ref.) — 
  120–129 mmHg 236/84,828 2.10 (1.73–2.56) <0.001 210/44,742 1.39 (1.14–1.69) 0.001 184/9,680 1.50 (1.19–1.90) 0.001 
  130–139 mmHg 169/40,959 2.35 (1.89–2.92) <0.001 200/28,618 1.78 (1.45–2.18) <0.001 158/8,365 1.46 (1.14–1.86) 0.002 
  140–149 mmHg 87/13,542 3.01 (2.31–3.93) <0.001 101/12,444 1.89 (1.48–2.43) <0.001 118/4,789 1.83 (1.41–2.38) <0.001 
  ≥150 mmHg 59/8,303 3.21 (2.37–4.34) <0.001 94/8,821 2.52 (1.95–3.26) <0.001 136/4,144 2.52 (1.95–3.26) <0.001 
 DBP          
  ≤74 mmHg 184/236,838 1.00 (Ref.) — 187/77,320 1.00 (Ref.) — 139/10,674 1.00 (Ref.) — 
  75–79 mmHg 115/51,366 1.59 (1.25–2.01) <0.001 124/27,087 1.30 (1.03–1.63) 0.024 114/5,966 1.33 (1.04–1.71) 0.024 
  80–84 mmHg 153/45,464 1.91 (1.53–2.38) <0.001 163/28,832 1.43 (1.15–1.77) 0.001 154/7,512 1.38 (1.09–1.74) 0.007 
  85–89 mmHg 123/23,647 2.56 (2.02–3.24) <0.001 113/17,777 1.46 (1.15–1.85) 0.002 113/5,215 1.42 (1.10–1.82) 0.007 
  ≥90 mmHg 158/23,497 2.99 (2.39–3.74) <0.001 209/21,135 2.20 (1.79–2.71) <0.001 191/7,171 1.79 (1.43–2.25) <0.001 
CVD          
 SBP          
  ≤119 mmHg 511/234,122 1.00 (Ref.) — 273/78,073 1.00 (Ref.) — 81/9,864 1.00 (Ref.) — 
  120–129 mmHg 348/85,195 1.46 (1.27–1.68) <0.001 315/45,111 1.70 (1.44–2.01) <0.001 146/9,968 1.72 (1.31–2.26) <0.001 
  130–139 mmHg 306/41,121 2.22 (1.91–2.58) <0.001 248/28,823 1.89 (1.58–2.25) <0.001 119/8,564 1.56 (1.17–2.07) 0.002 
  140–149 mmHg 153/13,557 2.98 (2.46–3.60) <0.001 146/12,512 2.41 (1.95–2.96) <0.001 90/4,866 1.99 (1.47–2.71) <0.001 
  ≥150 mmHg 160/8,337 4.76 (3.94–5.75) <0.001 178/8,857 4.12 (3.38–5.02) <0.001 133/4,226 3.54 (2.66–4.70) <0.001 
 DBP          
  ≤74 mmHg 503/237,761 1.00 (Ref.) — 282/77,938 1.00 (Ref.) — 118/ 11,039 1.00 (Ref.) — 
  75–79 mmHg 197/51,620 1.40 (1.19–1.66) <0.001 144/27,250 1.25 (1.02–1.54) 0.029 91/6,125 1.34 (1.02–1.77) 0.036 
  80–84 mmHg 245/45,632 1.76 (1.50–2.06) <0.001 236/29,002 1.80 (1.51–2.15) <0.001 104/7,728 1.19 (0.91–1.55) 0.200 
  85–89 mmHg 199/23,749 2.49 (2.10–2.96) <0.001 171/17,917 2.01 (1.66–2.45) <0.001 82/5,317 1.35 (1.01–1.79) 0.042 
  ≥90 mmHg 334/23,570 4.03 (3.46–4.69) <0.001 327/21,269 3.27 (2.76–3.87) <0.001 174/7,279 2.25 (1.76–2.86) <0.001 
NormoglycemiaBorderline glycemiaDiabetes
OutcomesEvents/nHR (95% CI)P valueEvents /nHR (95% CI)P valueEvents /nHR (95% CI)P value
CAD          
 SBP          
  ≤119 mmHg 182/233,180 1.00 (Ref.) — 191/77,526 1.00 (Ref.) — 115/9,560 1.00 (Ref.) — 
  120–129 mmHg 236/84,828 2.10 (1.73–2.56) <0.001 210/44,742 1.39 (1.14–1.69) 0.001 184/9,680 1.50 (1.19–1.90) 0.001 
  130–139 mmHg 169/40,959 2.35 (1.89–2.92) <0.001 200/28,618 1.78 (1.45–2.18) <0.001 158/8,365 1.46 (1.14–1.86) 0.002 
  140–149 mmHg 87/13,542 3.01 (2.31–3.93) <0.001 101/12,444 1.89 (1.48–2.43) <0.001 118/4,789 1.83 (1.41–2.38) <0.001 
  ≥150 mmHg 59/8,303 3.21 (2.37–4.34) <0.001 94/8,821 2.52 (1.95–3.26) <0.001 136/4,144 2.52 (1.95–3.26) <0.001 
 DBP          
  ≤74 mmHg 184/236,838 1.00 (Ref.) — 187/77,320 1.00 (Ref.) — 139/10,674 1.00 (Ref.) — 
  75–79 mmHg 115/51,366 1.59 (1.25–2.01) <0.001 124/27,087 1.30 (1.03–1.63) 0.024 114/5,966 1.33 (1.04–1.71) 0.024 
  80–84 mmHg 153/45,464 1.91 (1.53–2.38) <0.001 163/28,832 1.43 (1.15–1.77) 0.001 154/7,512 1.38 (1.09–1.74) 0.007 
  85–89 mmHg 123/23,647 2.56 (2.02–3.24) <0.001 113/17,777 1.46 (1.15–1.85) 0.002 113/5,215 1.42 (1.10–1.82) 0.007 
  ≥90 mmHg 158/23,497 2.99 (2.39–3.74) <0.001 209/21,135 2.20 (1.79–2.71) <0.001 191/7,171 1.79 (1.43–2.25) <0.001 
CVD          
 SBP          
  ≤119 mmHg 511/234,122 1.00 (Ref.) — 273/78,073 1.00 (Ref.) — 81/9,864 1.00 (Ref.) — 
  120–129 mmHg 348/85,195 1.46 (1.27–1.68) <0.001 315/45,111 1.70 (1.44–2.01) <0.001 146/9,968 1.72 (1.31–2.26) <0.001 
  130–139 mmHg 306/41,121 2.22 (1.91–2.58) <0.001 248/28,823 1.89 (1.58–2.25) <0.001 119/8,564 1.56 (1.17–2.07) 0.002 
  140–149 mmHg 153/13,557 2.98 (2.46–3.60) <0.001 146/12,512 2.41 (1.95–2.96) <0.001 90/4,866 1.99 (1.47–2.71) <0.001 
  ≥150 mmHg 160/8,337 4.76 (3.94–5.75) <0.001 178/8,857 4.12 (3.38–5.02) <0.001 133/4,226 3.54 (2.66–4.70) <0.001 
 DBP          
  ≤74 mmHg 503/237,761 1.00 (Ref.) — 282/77,938 1.00 (Ref.) — 118/ 11,039 1.00 (Ref.) — 
  75–79 mmHg 197/51,620 1.40 (1.19–1.66) <0.001 144/27,250 1.25 (1.02–1.54) 0.029 91/6,125 1.34 (1.02–1.77) 0.036 
  80–84 mmHg 245/45,632 1.76 (1.50–2.06) <0.001 236/29,002 1.80 (1.51–2.15) <0.001 104/7,728 1.19 (0.91–1.55) 0.200 
  85–89 mmHg 199/23,749 2.49 (2.10–2.96) <0.001 171/17,917 2.01 (1.66–2.45) <0.001 82/5,317 1.35 (1.01–1.79) 0.042 
  ≥90 mmHg 334/23,570 4.03 (3.46–4.69) <0.001 327/21,269 3.27 (2.76–3.87) <0.001 174/7,279 2.25 (1.76–2.86) <0.001 

Shown are the risks of CAD and CVD according to combinations of glucose status and SBP categories and DBP. Adjusted for age, sex, smoking, body mass index, LDL-cholesterol, HDL-cholesterol, and antihypertensive drug therapy.

Associations of DBP With CAD/CVD

The cumulative incidences of CAD/CVD according to five stratified DBP categories and glycemic status are shown in Fig. 1A (right) and B (right). Table 3 shows adjusted HRs for the incidence of CAD/CVD according to five stratified DBP categories and glycemic status. Similar to the relationship between SBP and CAD/CVD, the CAD/CVD risk concurrently increased with higher DBP categories. Compared with DBP ≤74 mmHg, the relative risks (95% CIs) for CAD/CVD in the other 4 quintiles (75–79, 80–84, 85–89, and ≥90 mmHg) were 1.59 (1.25–2.01)/1.40 (1.19–1.66), 1.91 (1.53–2.38)/1.76 (1.50–2.06), 2.56 (2.02–3.24)/2.49 (2.10–2.96), and 2.99 (2.39–3.74)/4.03 (3.46–4.69) for normoglycemia, 1.30 (1.03–1.63)/1.25 (1.02–1.54), 1.43 (1.15–1.77)/1.80 (1.51–2.15), 1.46 (1.15–1.85)/2.01 (1.66–2.45), and 2.20 (1.79–2.71)/3.27 (2.76–3.87) for borderline glycemia, and 1.33 (1.04–1.71)/1.34 (1.02–1.77), 1.38 (1.09–1.74)/1.19 (0.91–1.55), 1.42 (1.10–1.82)/1.35 (1.01–1.79), and 1.79 (1.43–2.25)/2.25 (1.76–2.86) for diabetes, respectively.

Sensitivity Analysis

Considering that using metformin and/or a sodium–glucose cotransporter 2 inhibitor (SGLT-2i) improves the cardiovascular prognosis in patients with diabetes (1517), the association of SBP and DBP with CAD/CVD events was examined excluding individuals with diabetes who took metformin and/or a SGLT-2i at baseline (Supplementary Table 1). However, the exclusion had little influence on the above results. Taking into consideration the characteristics of hypertension in the elderly with high SBP but normal DBP values due to arterial stiffness (18), we also performed a sensitivity analysis limiting participants to those ≥65 years old. Generally, neither SBP nor DBP was associated with CAD/CVD risk regardless of glycemic status (Supplementary Table 2).

Associations of Combinations of BP Values and Glycemic Status With CAD/CVD Risk

Supplementary Fig. 1 shows the incidence of CAD/CVD according to five stratified SBP and DBP values and three designations of glycemic status. The glycemic status and BP values had a synergistic effect on the incidence of CAD/CVD. Supplementary Tables 2, 3, and 4 show the adjusted risks for CAD/CVD in five groups categorized according to SBP or DBP values and three designations of glycemic status using Cox regression models. The HRs (95% CIs) for participants in the highest SBP category and with borderline glycemia and in the highest SBP category (≥150 mmHg) and with diabetes compared with those with SBP ≤119 mmHg and with normoglycemia were 3.89 (3.01–5.02) and 8.39 (6.62–10.63) for CAD, respectively, and 4.44 (3.71–5.32) and 5.59 (4.54–6.87) for CVD, respectively (Supplementary Table 3). The HRs (95% CIs) for those in the highest DBP category (≥90 mmHg) and with borderline glycemia and in the highest DBP category (≥90 mmHg) and with diabetes compared with those with a DBP ≤74 mmHg and normoglycemia were 3.37 (2.74–4.15)/6.55 (5.26–8.14) for CAD and 3.73 (3.21–4.34)/4.77 (3.95–5.77) for CVD (Supplementary Table 3).

The main finding of the current cohort study was a linear relationship between SBP and DBP and the risk of CAD or CVD regardless of glucose status, although with one exception: individuals with diabetes and SBP of 120–129 mmHg had a higher risk of CAD/CVD than those with SPB of 130–139 mmHg. In particular, the CAD/CVD risk was higher in participants with SBP of 120–129 mmHg (i.e., lower than SBP targets for hypertension in major global guidelines [i.e., 130 mmHg] [19,20]) compared with those with SBP <120 mmHg. A plausible explanation for this finding is that an increase in the presence of coronary artery calcium was in parallel with an increase in SBP levels beginning from 90 mmHg (21).

The novelty of our study findings was that cardiovascular risks were gradually elevated in accordance with increases in both SBP and DBP values and that a linear relationship between BP and cardiovascular risks was observed not only in the general population but also when the population was designated as having normoglycemia, borderline glycemia, and diabetes. For example, NIPPON DATA 80 showed such linearity only in the general population (1), and a Swedish cohort study showed it only in patients with diabetes (22).

Our results did not support a previous cohort study (23). That Chinese population-based study showed that BP of 130–139/80–89 mmHg was significantly associated with a higher cardiovascular risk compared with BP of <130/80 mmHg in individuals with diabetes but not with normoglycemia or borderline glycemia. However, it did not assess cardiovascular risk in participants with prehypertension (i.e., 120–139 mmHg) compared with normal BP (≤120 mmHg). It is possible that the heterogeneity in cardiovascular risk among participants with SBP ≤130 mmHg resulted in the inconsistency in the findings of that cohort study and ours.

The current results suggested that strict BP control is necessary to prevent cardiovascular diseases in patients with borderline glycemia and diabetes as well as in normoglycemic individuals. However, that has not been recommended for patients with diabetes by previous trials (6,24,25). Although it may be difficult to compare findings from cohort studies with those from interventional trials, the reasons for inconsistencies are of value for discussion. Most previous trials targeted patients at particularly high cardiovascular risk among those with diabetes (3,26). It is speculated that such patients would develop cardiovascular diseases due to risk factors other than BP (e.g., poor glycemic control, obesity), even if strict BP control had been achieved. It was suggested that randomized controlled trials should target those frequently encountered patients with borderline glycemia or diabetes and hypertension who are not considered at high risk for cardiovascular disease to confirm the findings of our cohort study and apply them to clinical practice.

Our study strengths included the large sample size and accurate definitions of CAD and CVD based on data from medical practices, thereby allowing precise identification of almost all patients with incident CAD and CVD during the follow-up.

However, several limitations should be addressed. First, unfortunately, this database did not have data on several confounders. As examples of confounders without which cardiovascular risks could be overestimated, we should address the estimated glomerular filtration rate and urinary protein excretion because these values are associated with both high BP and cardiovascular events (27,28). Although we adjusted the risks for antihypertensive drugs using dichotomous data on BP treatment, the intensity of BP interventions was not considered. For example, the current study showed that in patients with diabetes, the incidence of CAD and CVD was more frequent with SBP of 120–129 mmHg than in those with SBP of 130–139 mmHg. This is not consistent with the linear relationship between BP values and cardiovascular risks observed among normoglycemia and borderline glycemia conditions. It is possible that the intervention for BP may have been enhanced in the 120–129 mmHg group based on guidelines for the treatment of diabetes. However, our study was incapable of adjusting for this reversal phenomenon. In addition, we did not distinguish nonsmokers from past smokers although they had different cardiovascular risks, depending on length of time after smoking cessation (29). However, the effect of combining nonsmokers and past smokers on the current result is unpredictable.

Second, as explanatory variables, we only used baseline values and did not consider subsequent changes in BP or details of treatment for various metabolic abnormalities. In particular, the failure to consider BP changes during the follow-up period could underestimate the true cardiovascular risk in relation to high BP values.

Third, there could be misclassification bias in determining glucose status for two main reasons: 1) we did not have data on oral glucose tolerance testing, meaning some individuals with normoglycemia might have been classified as borderline glycemia or diabetes, and some with borderline glycemia would have been classified as having diabetes; 2) the values for HbA1c had been changed from Japanese Diabetes Society to NGSP during the study period, which would mean that the diagnosis of normoglycemia, borderline glycemia, or diabetes depended on the time of measurement.

Lastly, because our study was composed of people enrolled with a health insurance provider for company employees and their dependents, a limited number of elderly persons was recruited. The number of elderly (aged ≥65 years) was 11,401 (1.9% of total participants). The numbers of CAD and CVD events in the elderly group were 151 (only 6.3% of CAD events in the entire group) and 228 (only 6.6% of CVD events in the entire group), respectively. In contrast with the NIPPONDATA 80 (1) showing that SBP but not DBP was associated with cardiovascular risk in the elderly (≥75 years), we could indicate the association of neither SBP nor DBP with CAD/CVD risk in participants aged ≥65 years (Supplementary Table 2). It is possible that the number of data were insufficient to evaluate the significance of BP in the elderly. Further studies are needed to examine the effect of age on the association between BP and cardiovascular risks throughout a range of glycemic status.

In conclusion, the current cohort study indicated that cardiovascular risks gradually increased with increases in both SBP and DBP values regardless of the glucose abnormality. Further trials to examine strict BP interventions for preventing cardiovascular diseases should focus on patients with borderline glycemia and diabetes to confirm findings from the current cohort study and apply them to clinical practice.

See accompanying article, p. 1910.

This article contains supplementary material online at https://doi.org/10.2337/figshare.14368454.

Acknowledgments. The authors thank Ms. Mami Haga, Niigata University Faculty of Medicine, for excellent secretarial assistance, and Mitsuru Hashiramoto, Mitsuru Clinic, for warm encouragement.

Funding. This work is supported by JMDC Inc., the Japan Society for Promotion of Science(JSPS), and the Ministry of Health, Labour and Welfare.

The sponsor had no role in the design and conduct of the study.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. M.H.Y. and K.F. developed the study design, researched the data, contributed to discussions, and wrote, reviewed, and edited the manuscript. S.K., T.S., T.O., Y.Y., M.Y., M.K., Y.M., T.Y., H.Se., and W.O., and researched the data, contributed to discussions, and wrote, reviewed, and edited the manuscript. H.So. developed the study design, contributed to discussions, and reviewed and edited the manuscript. M.H.Y. and K.F. are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Prior Presentation. Parts of this study were presented in abstract form at the 80th Scientific Sessions of the American Diabetes Association, 12–16 June 2020.

1.
Okayama
A
,
Kadowaki
T
,
Okamura
T
,
Hayakawa
T
;
NIPPON DATA80 Research Group
.
Age-specific effects of systolic and diastolic blood pressures on mortality due to cardiovascular diseases among Japanese men (NIPPON DATA80)
.
J Hypertens
2006
;
24
:
459
462
2.
Wright
JT
 Jr
,
Williamson
JD
,
Whelton
PK
, et al.;
SPRINT Research Group
.
A Randomized Trial of Intensive versus Standard Blood-Pressure Control
.
N Engl J Med
2015
;
373
:
2103
2116
3.
Patel
A
,
MacMahon
S
,
Chalmers
J
, et al.;
ADVANCE Collaborative Group
.
Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial
.
Lancet
2007
;
370
:
829
840
4.
Ettehad
D
,
Emdin
CA
,
Kiran
A
, et al
.
Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis
.
Lancet
2016
;
387
:
957
967
5.
Bundy
JD
,
Li
C
,
Stuchlik
P
, et al
.
Systolic blood pressure reduction and risk of cardiovascular disease and mortality: a systematic review and network meta-analysis
.
JAMA Cardiol
2017
;
2
:
775
781
6.
Thomopoulos
C
,
Parati
G
,
Zanchetti
A
.
Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 - Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials
.
J Hypertens
2017
;
35
:
922
944
7.
Bress
AP
,
King
JB
,
Kreider
KE
, et al.;
SPRINT Research Group
.
Effect of intensive versus standard blood pressure treatment according to baseline prediabetes status: a post hoc analysis of a randomized trial
.
Diabetes Care
2017
;
40
:
1401
1408
8.
Hubbard
D
,
Colantonio
LD
,
Tanner
RM
, et al
.
Prediabetes and risk for cardiovascular disease by hypertension status in black adults: the Jackson Heart Study
.
Diabetes Care
2019
;
42
:
2322
2329
9.
Kimura
S
,
Sato
T
,
Ikeda
S
,
Noda
M
,
Nakayama
T
.
Development of a database of health insurance claims: standardization of disease classifications and anonymous record linkage
.
J Epidemiol
2010
;
20
:
413
419
10.
Yamada-Harada
M
,
Fujihara
K
,
Osawa
T
, et al
.
Relationship between number of multiple risk factors and coronary artery disease risk with and without diabetes mellitus
.
J Clin Endocrinol Metab
2019
;
104
:
5084
5090
11.
Fujihara
K
,
Matsubayashi
Y
,
Yamamoto
M
, et al
.
Impact of body mass index and metabolic phenotypes on coronary artery disease according to glucose tolerance status
.
Diabetes Metab
2017
;
43
:
543
546
12.
Kitazawa
M
,
Fujihara
K
,
Osawa
T
, et al
.
Risk of coronary artery disease according to glucose abnormality status and prior coronary artery disease in Japanese men
.
Metabolism
2019
;
101
:
153991
13.
Kashiwagi
A
,
Kasuga
M
,
Araki
E
, et al.;
Committee on the Standardization of Diabetes Mellitus-Related Laboratory Testing of Japan Diabetes Society
.
International clinical harmonization of glycated hemoglobin in Japan: from Japan Diabetes Society to National Glycohemoglobin Standardization Program values
.
J Diabetes Investig
2012
;
3
:
39
40
14.
Umemura
S
,
Arima
H
,
Arima
S
, et al
.
The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019)
.
Hypertens Res
2019
;
42
:
1235
1481
15.
UK Prospective Diabetes Study (UKPDS) Group
.
Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34)
.
Lancet
1998
;
352
:
854
865
16.
Zinman
B
,
Wanner
C
,
Lachin
JM
, et al.;
EMPA-REG OUTCOME Investigators
.
Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
.
N Engl J Med
2015
;
373
:
2117
2128
17.
Neal
B
,
Perkovic
V
,
Mahaffey
KW
, et al.;
CANVAS Program Collaborative Group
.
Canagliflozin and cardiovascular and renal events in type 2 diabetes
.
N Engl J Med
2017
;
377
:
644
657
18.
Franklin
SS
,
Gustin
W
 4th
,
Wong
ND
, et al
.
Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study
.
Circulation
1997
;
96
:
308
315
19.
Whelton
PK
,
Carey
RM
,
Aronow
WS
, et al
.
2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
.
Hypertension
2018
;
71
:
e13
e115
20.
Williams
B
,
Mancia
G
,
Spiering
W
, et al.;
ESC Scientific Document Group
.
2018 ESC/ESH Guidelines for the management of arterial hypertension
.
Eur Heart J
2018
;
39
:
3021
3104
21.
Whelton
SP
,
McEvoy
JW
,
Shaw
L
, et al
.
Association of normal systolic blood pressure level with cardiovascular disease in the absence of risk factors
.
JAMA Cardiol
2020
;
5
:
1011
1018
22.
Adamsson Eryd
S
,
Gudbjörnsdottir
S
,
Manhem
K
, et al
.
Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study
.
BMJ
2016
;
354
:
i4070
23.
Tian
J
,
Sheng
CS
,
Sun
W
, et al
.
Effects of high blood pressure on cardiovascular disease events among Chinese adults with different glucose metabolism
.
Diabetes Care
2018
;
41
:
1895
1900
24.
Brunström
M
,
Eliasson
M
,
Nilsson
PM
,
Carlberg
B
.
Blood pressure treatment levels and choice of antihypertensive agent in people with diabetes mellitus: an overview of systematic reviews
.
J Hypertens
2017
;
35
:
453
462
25.
Wan
EYF
,
Yu
EYT
,
Chin
WY
, et al
.
Effect of achieved systolic blood pressure on cardiovascular outcomes in patients with type 2 diabetes: a population-based retrospective cohort study
.
Diabetes Care
2018
;
41
:
1134
1141
26.
Cushman
WC
,
Evans
GW
,
Byington
RP
, et al.;
ACCORD Study Group
.
Effects of intensive blood-pressure control in type 2 diabetes mellitus
.
N Engl J Med
2010
;
362
:
1575
1585
27.
Go
AS
,
Chertow
GM
,
Fan
D
,
McCulloch
CE
,
Hsu
CY
.
Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization
.
N Engl J Med
2004
;
351
:
1296
1305
28.
de Zeeuw
D
,
Parving
HH
,
Henning
RH
.
Microalbuminuria as an early marker for cardiovascular disease
.
J Am Soc Nephrol
2006
;
17
:
2100
2105
29.
Duncan
MS
,
Freiberg
MS
,
Greevy
RA
 Jr
,
Kundu
S
,
Vasan
RS
,
Tindle
HA
.
Association of smoking cessation with subsequent risk of cardiovascular disease
.
JAMA
2019
;
322
:
642
650
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.