Diabetes is a group of chronic diseases characterized by hyperglycemia. Chronic hyperglycemia injures the human body in many different ways. Modern medical care therefore uses a vast array of lifestyle and pharmaceutical interventions aimed at preventing and controlling hyperglycemia. One of the chief injuries arising from hyperglycemia is injury to vasculature, which is classified as either small vascular injury (microvascular disease) or injury to the large blood vessels of the body (macrovascular disease). As medical science advances increasingly toward prevention of complications of diabetes, it is important for clinicians to be familiar with the relationship between diabetes control and vascular injury.

Diabetic retinopathy

Diabetic retinopathy may be the most common microvascular complication of diabetes. It is responsible for ~ 10,000 new cases of blindness every year in the United States alone.1 

The risk of developing diabetic retinopathy or other microvascular complications of diabetes depends on both the duration and the severity of hyperglycemia. Development of diabetic retinopathy in patients with type 2 diabetes was found to be related to both the severity of hyperglycemia and the presence of hypertension in the U.K. Prospective Diabetes Study (UKPDS), and most patients with type 1 diabetes develop evidence of retinopathy within 20 years of diagnosis.2,3  Retinopathy may begin to develop as early as 7 years before the diagnosis of diabetes in patients with type 2 diabetes.1  There are several proposed pathological mechanisms by which diabetes may lead to development of retinopathy.

Aldose reductase may play a role in the development of diabetes complications. Aldose reductase is the initial enzyme in the intracellular polyol pathway. This pathway involves the conversion of glucose into glucose alcohol (sorbitol). High glucose levels increase the flux of sugar molecules through the polyol pathway, which causes sorbitol accumulation in cells. Osmotic stress from sorbitol accumulation has been postulated as an underlying mechanism in the development of diabetic microvascular complications, including diabetic retinopathy. In animal models, sugar alcohol accumulation has been linked to microaneurysm formation, thickening of basement membranes, and loss of pericytes. Treatment studies with aldose reductase inhibitors, however, have been disappointing.1,4,5 

Cells are also thought to be injured by glycoproteins. High glucose concentrations can promote the nonenzymatic formation of advanced glycation end products (AGEs). In animal models, these substances have also been associated with formation of microaneurysms and pericyte loss. Evaluations of AGE inhibitors are underway.1 

Oxidative stress may also play an important role in cellular injury from hyperglycemia. High glucose levels can stimulate free radical production and reactive oxygen species formation. Animal studies have suggested that treatment with antioxidants such as vitamin E may attenuate some vascular dysfunction associated with diabetes, but treatment with antioxidants has not yet been shown to alter the development or progression of retinopathy or other microvascular complications of the disease.1,6 

Growth factors, including vascular endothelial growth factor (VEGF), growth hormone, and transforming growth factor beta, have also been postulated to play important roles in the development of diabetic retinopathy. VEGF production is increased in diabetic retinopathy, possibly in response to hypoxia. In animal models, suppression of VEGF production is associated with less progression of retinopathy.1,3,7 

Diabetic retinopathy is generally classified as either background or proliferative. It is important to have a general understanding of the features of each to interpret eye examination reports and advise patients about disease progression and prognosis.

Background retinopathy includes such features as small hemorrhages in the middle layers of the retina. They clinically appear as “dots” and therefore are frequently referred to as “dot hemorrhages.” Hard exudates are caused by lipid deposition that typically occurs at the margins of hemorrhages. Microaneurysms are small vascular dilatations that occur in the retina, often as the first sign of retinopathy. They clinically appear as red dots during retinal examination. Retinal edema may result from microvascular leakage and is indicative of a compromised blood-retinal barrier. The appearance is one of grayish retinal areas. Retinal edema may require intervention because it is sometimes associated with visual deterioration.8 

Proliferative retinopathy is characterized by the formation of new blood vessels on the surface of the retina and can lead to vitreous hemorrhage. White areas on the retina (“cotton wool spots”) can be a sign of impending proliferative retinopathy. If proliferation continues, blindness can occur through vitreous hemorrhage and traction retinal detachment. With no intervention, visual loss may occur. Laser photocoagulation can often prevent proliferative retinopathy from progressing to blindness; therefore, close surveillance for the existence or progression of retinopathy in patients with diabetes is crucial.8 

Diabetic nephropathy

Diabetic nephropathy is the leading cause of renal failure in the United States. It is defined by proteinuria of > 500 mg in 24 hours in the setting of diabetes, but this is preceded by lower degrees of proteinuria, called “microalbuminuria.” Microalbuminuria is defined as albumin excretion of 30–299 mg/24 hours. Without intervention, diabetic patients with microalbuminuria typically progress to proteinuria and overt diabetic nephropathy. This progression occurs in both type 1 and type 2 diabetes.

As many as 7% of patients with type 2 diabetes may already have microalbuminuria at the time they are diagnosed with diabetes.9  In the European Diabetes Prospective Complications Study, the cumulative incidence of microalbuminuria in patients with type 1 diabetes was ~ 12% during a period of 7 years.9,10  In the UKPDS, the incidence of microalbuminuria was 2% per year in patients with type 2 diabetes, and the 10-year prevalence after diagnosis was 25%.9,11 

Pathological changes to the kidney include increased glomerular basement membrane thickness, microaneurysm formation, mesangial nodule formation (Kimmelsteil-Wilson bodies), and other changes. The underlying mechanism of injury may also involve some or all of the same mechanisms as diabetic retinopathy.

Screening for diabetic nephropathy or microalbuminuria may be accomplished by either a 24-hour urine collection or a spot urine measurement of microalbumin. Measurement of the microalbumin-to-creatinine ratio may help account for concentration or dilution of urine, and spot measurements are more convenient for patients than 24-hour urine collections. It is important to note that falsely elevated urine protein levels may be produced by conditions such as urinary tract infections, exercise, and hematuria.

Initial treatment of diabetic nephropathy, as of other complications of diabetes, is prevention. Like other microvascular complications of diabetes, there are strong associations between glucose control (as measured by A1C) and the risk of developing diabetic nephropathy. Patients should be treated to the lowest safe glucose level that can be obtained to prevent or control diabetic nephropathy.9,11,12  Treatment with ACE inhibitors has not been shown to prevent the development of microalbuminuria in patients with type 1 diabetes, but it has been shown to decrease the risk of developing nephropathy and cardiovascular events in patients with type 2 diabetes.9,13 

In addition to aggressive treatment of elevated blood glucose, patients with diabetic nephropathy benefit from treatment with antihypertensive drugs. Renin-angiotensin system blockade has additional benefits beyond the simple blood pressure–lowering effect in patients with diabetic nephropathy. Several studies have demonstrated renoprotective effects of treatment with ACE inhibitors and antiotensin receptor blockers (ARBs), which appear to be present independent of their blood pressure–lowering effects, possibly because of decreasing intraglomerular pressure. Both ACE inhibitors and ARBs have been shown to decrease the risk of progression to macroalbuminuria in patients with microalbuminuria by as much as 60–70%. These drugs are recommended as the first-line pharmacological treatment of microalbuminuria, even in patients without hypertension.9 

Similarly, patients with macroalbuminuria benefit from control of hypertension. Hypertension control in patients with macroalbuminuria from diabetic kidney disease slows decline in glomerular filtration rate (GFR). Treatment with ACE inhibitors or ARBs has been shown to further decrease the risk of progression of kidney disease, also independent of the blood pressure–lowering effect.

Combination treatment with an ACE inhibitor and an ARB has been shown to have additional renoprotective effects. It should be noted that patients treated with these drugs (especially in combination) may experience an initial increase in creatinine and must be monitored for hyperkalemia. Considerable increase in creatinine after initiation of these agents should prompt an evaluation for renal artery stenosis.9,14 

Diabetic neuropathy

Diabetic neuropathy is recognized by the American Diabetes Association (ADA) as “the presence of symptoms and/or signs of peripheral nerve dysfunction in people with diabetes after the exclusion of other causes.”15  As with other microvascular complications, the risk of developing diabetic neuropathy is proportional to both the magnitude and duration of hyperglycemia, and some individuals may possess genetic attributes that affect their predisposition to developing such complications.

The precise nature of injury to the peripheral nerves from hyperglycemia is not known but likely is related to mechanisms such as polyol accumulation, injury from AGEs, and oxidative stress. Peripheral neuropathy in diabetes may manifest in several different forms, including sensory, focal/multifocal, and autonomic neuropathies. More than 80% of amputations occur after foot ulceration or injury, which can result from diabetic neuropathy.16  Because of the considerable morbidity and mortality that can result from diabetic neuropathy, it is important for clinicians to understand its manifestations, prevention, and treatment.

Chronic sensorimotor distal symmetric polyneuropathy is the most common form of neuropathy in diabetes. Typically, patients experience burning, tingling, and “electrical” pain, but sometimes they may experience simple numbness. In patients who experience pain, it may be worse at night. Patients with simple numbness can present with a painless foot ulceration, so it is important to realize that a lack of symptoms does not rule out the presence of neuropathy.

Physical examination reveals sensory loss to light touch, vibration, and temperature. Abnormalities in more than one test of peripheral sensation are > 87% sensitive in detecting the presence of neuropathy. Patients also typically experience loss of ankle reflex.16  Patients who have lost 10-g monofilament sensation are at considerably elevated risk for developing foot ulceration.17 

Pure sensory neuropathy is relatively rare and associated with periods of poor glycemic control or considerable fluctuation in diabetes control. It is characterized by isolated sensory findings without signs of motor neuropathy. Symptoms are typically most prominent at night.16 

Mononeuropathies typically have a more sudden onset and involve virtually any nerve, but most commonly, the median, ulnar, and radial nerves are affected. Cranial neuropathies have been described but are rare. It should be noted that nerve entrapment occurs frequently in the setting of diabetes. Electrophysiological evaluation in diabetic neuropathy demonstrates decreases in both amplitude of nerve impulse and conduction but may be useful in identifying the location of nerve entrapment. Diabetic amyotrophy may be a manifestation of diabetic mononeuropathy and is characterized by severe pain and muscle weakness and atrophy, usually in large thigh muscles.16 

Several other forms of neuropathy may mimic the findings in diabetic sensory neuropathy and mononeuropathy. Chronic inflammatory polyneuropathy, vitamin B12 deficiency, hypothyroidism, and uremia should be ruled out in the process of evaluating diabetic peripheral neuropathy.16 

Diabetic autonomic neuropathy also causes significant morbidity and even mortality in patients with diabetes. Neurological dysfunction may occur in most organ systems and can be manifest by gastroparesis, constipation, diarrhea, anhidrosis, bladder dysfunction, erectile dysfunction, exercise intolerance, resting tachycardia, silent ischemia, and even sudden cardiac death.16  Cardiovascular autonomic dysfunction is associated with an increased risk of silent myocardial ischemia and mortality.18 

There is no specific treatment of diabetic neuropathy, although many drugs are available to treat its symptoms. The primary goal of therapy is to control symptoms and prevent worsening of neuropathy through improved glycemic control. Some studies have suggested that control of hyperglycemia and avoidance of glycemic excursions may improve symptoms of peripheral neuropathy. Amitriptyline, imiprimine, paroxetine, citalopram, gabapentin, pregablin, carbamazepine, topiramate, duloxetine, tramadol, and oxycodone have all been used to treat painful symptoms, but only duloxetine and pregablin possess official indications for the treatment of painful peripheral diabetic neuropathy.16  Treatment with some of these medications may be limited by side effects, and no single drug is universally effective. Treatment of autonomic neuropathy is targeted toward the organ system that is affected but also includes optimization of glycemic control.

The central pathological mechanism in macrovascular disease is the process of atherosclerosis, which leads to narrowing of arterial walls throughout the body. Atherosclerosis is thought to result from chronic inflammation and injury to the arterial wall in the peripheral or coronary vascular system. In response to endothelial injury and inflammation, oxidized lipids from LDL particles accumulate in the endothelial wall of arteries. Angiotensin II may promote the oxidation of such particles. Monocytes then infiltrate the arterial wall and differentiate into macrophages, which accumulate oxidized lipids to form foam cells. Once formed, foam cells stimulate macrophage proliferation and attraction of T-lymphocytes, which in turn induce smooth muscle proliferation in the arterial walls and collagen accumulation. The net result of the process is the formation of a lipid-rich atherosclerotic lesion with a fibrous cap. Rupture of this lesion leads to acute vascular infarction.19 

In addition to atheroma formation, there is strong evidence of increased platelet adhesion and hypercoagulability in type 2 diabetes. Impaired nitric oxide generation and increased free radical formation in platelets, as well as altered calcium regulation, may promote platelet aggregation. Elevated levels of plasminogen activator inhibitor type 1 may also impair fibrinolysis in patients with diabetes. The combination of increased coagulability and impaired fibrinolysis likely further increases the risk of vascular occlusion and cardiovascular events in type 2 diabetes.20 

Diabetes increases the risk that an individual will develop cardiovascular disease (CVD). Although the precise mechanisms through which diabetes increases the likelihood of atherosclerotic plaque formation are not completely defined, the association between the two is profound. CVD is the primary cause of death in people with either type 1 or type 2 diabetes.21,22  In fact, CVD accounts for the greatest component of health care expenditures for people with diabetes.22,23 

Among macrovascular complications, coronary heart disease has been associated with diabetes in numerous studies beginning with the Framingham study.24  More recent studies have shown that the risk of myocardial infarction (MI) in people with diabetes is equivalent to the risk in nondiabetic patients who have already had an MI.25  These discoveries have led to new recommendations by the ADA and American Heart Association that diabetes be considered a coronary artery disease risk equivalent rather than a risk factor.26 

Type 2 diabetes typically occurs in the setting of the metabolic syndrome, which also includes abdominal obesity, hypertension, hyperlipidemia, and increased coagulability. These other factors can also act to promote CVD. Even in this setting of multiple risk factors, type 2 diabetes acts as an independent risk factor for the development of ischemic disease, stroke, and death.27  Among people with type 2 diabetes, women may be at higher risk for coronary heart disease than men. The presence of microvascular disease is also a predictor of coronary heart events.28 

Diabetes is also a strong independent predictor of risk of stroke and cerebrovascular disease, as in coronary artery disease.29  Patients with type 2 diabetes have a much higher risk of stroke, with an increased risk of 150–400%. Risk of stroke-related dementia and recurrence, as well as stroke-related mortality, is elevated in patients with diabetes.20 

Patients with type 1 diabetes also bear a disproportionate burden of coronary heart disease. Studies have shown that these patients have a higher mortality from ischemic heart disease at all ages compared to the general population. In individuals > 40 years of age, women experience a higher mortality from ischemic heart disease than men.21  Observational studies have shown that the cerebrovascular mortality rate is elevated at all ages in patients with type 1 diabetes.30 

The increased risk of CVD has led to more aggressive treatment of these conditions to achieve primary or secondary prevention of coronary heart disease. Studies in type 1 diabetes have shown that intensive diabetes control is associated with a lower resting heart rate and that patients with higher degrees of hyperglycemia tend to have a higher heart rate, which is associated with higher risk of CVD.22  Even more conclusively, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study demonstrated that during 17 years of prospective analysis, intensive treatment of type 1 diabetes, including lower A1C, is associated with a 42% risk reduction in all cardiovascular events and a 57% reduction in the risk of nonfatal MI, stroke, or death from CVD.31 

There has not been a large, long-term, controlled study showing decreases in macrovascular disease event rates from improved glycemic control in type 2 diabetes. Modification of other elements of the metabolic syndrome, however, has been shown to very significantly decrease the risk of cardiovascular events in numerous studies. Blood pressure lowering in patients with type 2 diabetes has been associated with decreased cardiovascular events and mortality. The UKPDS was among the first and most prominent studies demonstrating a reduction in macrovascular disease with treatment of hypertension in type 2 diabetes.32,33 

There is additional benefit to blood pressure lowering with ACE inhibitors or ARBs. Blockade of the renin angiotensin system using either an ACE inhibitor or an ARB reduces cardiovascular endpoints more than other antihypertensive agents.13,20,34  It should be noted that use of ACE inhibitors and ARBs also may help slow progression of diabetic microvascular kidney disease (as described above). Multiple drug therapy, however, is generally required to control hypertension in patients with type 2 diabetes.

Another target of therapy is blood lipid concentration. Numerous studies have shown decreased risk in macrovascular disease in patients with diabetes who are treated with lipid-lowering agents, especially statins. These drugs are effective for both primary and secondary prevention of CVD, but patients with diabetes and preexisting CVD may receive the highest benefit from treatment. Although reviewing all relevant studies is beyond the scope of this article, it should be noted that the beneficial effects of lipid and blood pressure lowering are relatively well proven and likely also extend to patients with type 1 diabetes.

In addition to statin therapy, fibric acid derivatives have beneficial effects. They raise HDL levels and lower triglyceride concentrations and have been shown to decrease the risk of MI in patients with diabetes in the Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial.20,26,3539 

Patients with type 1 diabetes of > 5 years' duration should have annual screening for microalbuminuria, and all patients with type 2 diabetes should undergo such screening at the time of diagnosis and annually thereafter. All patients with diabetes should have serum creatinine measurement performed annually. Patients with microalbuminuria or macroalbuminuria should be treated with an ACE inhibitor or ARB unless they are pregnant or cannot tolerate the medication. Patients who cannot tolerate one of these medications may be able to tolerate the other. Potassium should be monitored in patients on such therapy. Patients with a GFR < 60 ml/minute or with uncontrolled hypertension or hyperkalemia may benefit from referral to a nephrologist.15,40 

Patients with type 1 diabetes should receive a comprehensive eye examination and dilation within 3–5 years after the onset of diabetes. Patients with type 2 diabetes should undergo such screening at the time of diagnosis. Patients should strive for optimal glucose and blood pressure control to decrease the likelihood of developing progression of diabetic retinopathy.15,40 

All patients with diabetes should undergo screening for distal symmetric polyneuropathy at the time of diagnosis and annually thereafter. Atypical features may prompt electrophysiological testing or testing for other causes of peripheral neuropathy. Patients who experience peripheral neuropathy should begin appropriate foot self-care, including wearing special footwear to decrease their risk of ulceration. They may also require referral for podiatric care. Screening for autonomic neuropathy should take place at the time of diagnosis in type 2 diabetes and beginning 5 years after the diagnosis of type 1 diabetes. Medication to control the symptoms of painful peripheral neuropathy may be effective in improving quality of life in patients but do not appear to alter the natural course of the disease. For this reason, patients and physicians should continue to strive for the best possible glycemic control.

In light of the above strong evidence linking diabetes and CVD and to control and prevent the microvascular complications of diabetes, the ADA has issued practice recommendations regarding the prevention and management of diabetes complications.

Blood pressure should be measured routinely. The goal blood pressure is < 130/80 mmHg. Patients with a blood pressure > 140/90 mmHg should be treated with drug therapy in addition to diet and lifestyle modification. Patients with a blood pressure of 130–139/80–89 mmHg may attempt a trial of lifestyle and behavioral therapy for 3 months and then receive pharmacological therapy if their goal blood pressure is not achieved. Initial drug therapy should be with a drug shown to decrease CVD risk, but all patients with diabetes and hypertension should receive an ACE inhibitor or ARB in their antihypertensive regimen.15,40 

Lipid testing should be performed in adult patients with diabetes at least annually. Lipid goals for adults with diabetes should be an LDL of < 100 mg/dl (or < 70 mg/dl in patients with overt CVD), HDL > 50 mg/dl, and fasting triglycerides < 150 mg/dl.

All patients with diabetes should be encouraged to limit consumption of saturated fat, trans fat, and cholesterol. Statin therapy to lower LDL by 30–40% regardless of baseline is recommended to decrease the risk of CVD in patients > 40 years of age. Patients < 40 years of age may also be considered for therapy. In individuals with overt CVD, special attention should be paid to treatment to lower triglycerides or raise HDL. Combination therapy with a statin plus other drugs, such as fibrates or niacin, may be necessary to achieve ideal lipid control, but patients should be monitored closely for possible adverse reactions of therapy.15,40 

Aspirin therapy (75–162 mg/day) is indicated in secondary prevention of CVD and should be used in patients with diabetes who are > 40 years of age and in those who are 30–40 years of age if other risk factors are present. Patients < 21 years of age should not receive aspirin therapy because of the risk of Reye's syndrome. Patients who cannot tolerate aspirin therapy because of allergy or adverse reaction may be considered for other antiplatelet agents.15,40 

In addition to the above pharmacological recommendations, patients with diabetes should be encouraged to not begin smoking or to stop smoking to decrease their risk of CVD and benefit their health in other ways. It should also be noted that statins, ACE inhibitors, and ARBs are strongly contraindicated in pregnancy.

1.
Fong
DS
,
Aiello
LP
,
Ferris
FL
 3rd
,
Klein
R
:
Diabetic retinopathy
.
Diabetes Care
27
:
2540
2553
,
2004
2.
U.K. Prospective Diabetes Study Group
:
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)
.
Lancet
352
:
837
853
,
1998
3.
Keenan
HA
,
Costacou
T
,
Sun
JK
,
Doria
A
,
Cavellerano
J
,
Coney
J
,
Orchard
TJ
,
Aiello
LP
,
King
GL
:
Clinical factors associated with resistance to microvascular complications in diabetic patients of extreme disease duration: the 50-year medalist study
.
Diabetes Care
30
:
1995
1997
,
2007
4.
Gabbay
KH
:
Hyperglycemia, polyol metabolism, and complications of diabetes mellitus
.
Annu Rev Med
26
:
521
536
,
1975
5.
Gabbay
KH
:
Aldose reductase inhibition in the treatment of diabetic neuropathy: where are we in 2004?
Curr Diab Rep
4
:
405
408
,
2004
6.
Kunisaki
M
,
Bursell
SE
,
Clermont
AC
,
Ishii
H
,
Ballas
LM
,
Jirousek
MR
,
Umeda
F
,
Nawata
H
,
King
GL
:
Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway
.
Am J Physiol
269
:
E239
E246
,
1995
7.
Aiello
LP
,
Pierce
EA
,
Foley
ED
,
Takagi
H
,
Chen
H
,
Riddle
L
,
Ferrara
N
,
King
GL
,
Smith
LE
:
Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins
.
Proc Natl Acad Sci U S A
92
:
10457
10461
,
1995
8.
Watkins
PJ
:
Retinopathy
.
BMJ
326
:
924
926
,
2003
9.
Gross
JL
,
de Azevedo
MJ
,
Silveiro
SP
,
Canani
LH
,
Caramori
ML
,
Zelmanovitz
T
:
Diabetic nephropathy: diagnosis, prevention, and treatment
.
Diabetes Care
28
:
164
176
,
2005
10.
Chaturvedi
N
,
Bandinelli
S
,
Mangili
R
,
Penno
G
,
Rottiers
RE
,
Fuller
JH
:
Microalbuminuria in type 1 diabetes: rates, risk factors and glycemic threshold
.
Kidney Int
60
:
219
227
,
2001
11.
Adler
AI
,
Stevens
RJ
,
Manley
SE
,
Bilous
RW
,
Cull
CA
,
Holman
RR
:
Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64)
.
Kidney Int
63
:
225
232
,
2003
12.
DCCT Research Group
:
The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus
.
N Engl J Med
329
:
977
986
,
1993
13.
HOPE Study Investigators
:
Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy
.
Lancet
355
:
253
259
,
2000
14.
Rossing
K
,
Jacobsen
P
,
Pietraszek
L
,
Parving
H
:
Renoprotective effects of adding angiotensin II receptor blocker to maximal recommended doses of ACE inhibitor in diabetic nephropathy: a randomized double-blind crossover trial
.
Diabetes Care
26
:
2268
2274
,
2003
15.
Gardner
CD
,
Kiazand
A
,
Alhassan
S
,
Kim
S
,
Stafford
RS
,
Balise
RR
,
Kraemer
HC
,
King
AC
:
Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: the A TO Z Weight Loss Study: a randomized trial
.
JAMA
297
:
969
977
,
2007
16.
Boulton
AJ
,
Vinik
AI
,
Arezzo
JC
,
Bril
V
,
Feldman
EL
,
Freeman
R
,
Malik
RA
,
Maser
RE
,
Sosenko
JM
,
Ziegler
D
:
Diabetic neuropathies: a statement by the American Diabetes Association
.
Diabetes Care
28
:
956
962
,
2005
17.
Abbott
CA
,
Carrington
AL
,
Ashe
H
,
Bath
S
,
Every
LC
,
Griffiths
J
,
Hann
AW
,
Hussein
A
,
Jackson
N
,
Johnson
KE
,
Ryder
CH
,
Torkington
R
,
Van Ross
ER
,
Whalley
AM
,
Widdows
P
,
Williamson
S
,
Boulton
AJ
:
The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort
.
Diabet Med
19
:
377
384
,
2002
18.
Maser
RE
,
Mitchell
BD
,
Vinik
AI
,
Freeman
R
:
The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes: a meta-analysis
.
Diabetes Care
26
:
1895
1901
,
2003
19.
Boyle
PJ
:
Diabetes mellitus and macrovascular disease: mechanisms and mediators
.
Am J Med
120
(
9 Suppl. 2
):
S12
S17
,
2007
20.
Beckman
JA
,
Creager
MA
,
Libby
P
:
Diabetes and atherosclerosis: epidemiology, pathophysiology, and management
.
JAMA
287
:
2570
2581
,
2002
21.
Laing
SP
,
Swerdlow
AJ
,
Slater
SD
,
Burden
AC
,
Morris
A
,
Waugh
NR
,
Gatling
W
,
Bingley
PJ
,
Patterson
CC
:
Mortality from heart disease in a cohort of 23,000 patients with insulin-treated diabetes
.
Diabetologia
46
:
760
765
,
2003
22.
Paterson
AD
,
Rutledge
BN
,
Cleary
PA
,
Lachin
JM
,
Crow
RS
:
The effect of intensive diabetes treatment on resting heart rate in type 1 diabetes: the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study
.
Diabetes Care
30
:
2107
2112
,
2007
23.
Hogan
P
,
Dall
T
,
Nikolov
P
:
Economic costs of diabetes in the US in 2002
.
Diabetes Care
26
:
917
932
,
2003
24.
Kannel
WB
,
McGee
DL
:
Diabetes and cardiovascular disease: the Framingham study
.
JAMA
241
:
2035
2038
,
1979
25.
Haffner
SM
,
Lehto
S
,
Ronnemaa
T
,
Pyorala
K
,
Laakso
M
:
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction
.
N Engl J Med
339
:
229
234
,
1998
26.
Buse
JB
,
Ginsberg
NH
,
Bakris
GL
,
Clark
NG
,
Costa
F
,
Eckel
R
,
Fonseca
V
,
Gerstein
HC
,
Grundy
S
,
Nesto
RW
,
Pignone
MP
,
Plutzky
J
,
Porte
D
,
Redberg
R
,
Stitzel
KF
,
Stone
NJ
:
Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association
.
Diabetes Care
30
:
162
172
,
2007
27.
Almdal
T
,
Scharling
H
,
Jensen
JS
,
Vestergaard
H
:
The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up
.
Arch Intern Med
164
:
1422
1426
,
2004
28.
Avogaro
A
,
Giorda
C
,
Maggini
M
,
Mannucci
E
,
Raschetti
R
,
Lombardo
F
,
Spila-Alegiani
S
,
Turco
S
,
Velussi
M
,
Ferrannini
E
:
Incidence of coronary heart disease in type 2 diabetic men and women: impact of microvascular complications, treatment, and geographic location
.
Diabetes Care
30
:
1241
1247
,
2007
29.
Lehto
S
,
Ronnemaa
T
,
Pyorala
K
,
Laakso
M
:
Predictors of stroke in middle-aged patients with non-insulin-dependent diabetes
.
Stroke
27
:
63
68
,
1996
30.
Laing
SP
,
Swerdlow
AJ
,
Carpenter
LM
,
Slater
SD
,
Burden
AC
,
Botha
JL
,
Morris
AD
,
Waugh
NR
,
Gatling
W
,
Gale
EA
,
Patterson
CC
,
Qiao
Z
,
Keen
H
:
Mortality from cerebrovascular disease in a cohort of 23,000 patients with insulin-treated diabetes
.
Stroke
34
:
418
421
,
2003
31.
Nathan
DM
,
Cleary
PA
,
Backlund
JY
,
Genuth
SM
,
Lachin
JM
,
Orchard
TJ
,
Raskin
P
,
Zinman
B
:
Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes
.
N Engl J Med
353
:
2643
2653
,
2005
32.
U.K. Prospective Diabetes Study Group
:
Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39
.
BMJ
317
:
713
720
,
1998
33.
Markovic
TP
,
Jenkins
AB
,
Campbell
LV
,
Furler
SM
,
Kraegen
EW
,
Chisholm
DJ
:
The determinants of glycemic responses to diet restriction and weight loss in obesity and NIDDM
.
Diabetes Care
21
:
687
694
,
1998
34.
Lindholm
LH
,
Ibsen
H
,
Dahlof
B
,
Devereux
RB
,
Beevers
G
,
de Faire
U
,
Fyhrquist
F
,
Julius
S
,
Kjeldsen
SE
,
Kristiansson
K
,
Lederballe-Pedersen
O
,
Nieminen
MS
,
Omvik
P
,
Oparil
S
,
Wedel
H
,
Aurup
P
,
Edelman
J
,
Snapinn
S
:
Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol
.
Lancet
359
:
1004
1010
,
2002
35.
Colhoun
HM
,
Betteridge
DJ
,
Durrington
PA
,
Hitman
GA
,
Neil
HA
,
Livingstone
SJ
,
Thomason
MJ
,
Mackness
MI
,
Charlton-Menys
V
,
Fuller
JH
:
Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial
.
Lancet
364
:
685
696
,
2004
36.
Collins
R
,
Armitage
J
,
Parish
S
,
Sleigh
P
,
Peto
R
:
MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomised placebo-controlled trial
.
Lancet
361
:
2005
2016
,
2003
37.
Frick
MH
,
Elo
O
,
Haapa
K
,
Heinonen
OP
,
Heinsalmi
P
,
Helo
P
,
Huttunen
JK
,
Kaitaniemi
P
,
Koskinen
P
,
Manninen
V
,
Maenpaa
H
,
Malkonen
M
,
Manttari
M
,
Norola
S
,
Pasternack
A
,
Pikkarinen
J
,
Romo
M
,
Sjoblom
T
,
Nikkila
EA
:
Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease
.
N Engl J Med
317
:
1237
1245
,
1987
38.
Koskinen
P
,
Manttari
M
,
Manninen
V
,
Huttunen
JK
,
Heinonen
OP
,
Frick
MH
:
Coronary heart disease incidence in NIDDM patients in the Helsinki Heart Study
.
Diabetes Care
15
:
820
825
,
1992
39.
Manninen
V
,
Elo
MO
,
Frick
MH
,
Haapa
K
,
Heinonen
OP
,
Heinsalmi
P
,
Helo
P
,
Huttunen
JK
,
Kaitaniemi
P
,
Koskinen
P
,
Maenpaa
H
,
Marjatta
M
,
Manttari
M
,
Norola
S
,
Pasternack
A
,
Pikkarainen
J
,
Romo
M
,
Sjoblom
T
,
Nikkila
EA
:
Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study
.
JAMA
260
:
641
651
,
1988
40.
American Diabetes Association
:
Standards of medical care in diabetes—2011
.
Diabetes Care
34
(
Suppl. 1
):
S11
S61
,
2011