G-protein–coupled receptor 40 (GPR40) is a promising target to support glucose-induced insulin release in patients with type 2 diabetes. We studied the role of GPR40 in the regulation of blood-nerve barrier integrity and its involvement in diabetes-induced neuropathies. Because GPR40 modulates insulin release, we used the streptozotocin model for type 1 diabetes, in which GPR40 functions can be investigated independently of its effects on insulin release. Diabetic wild-type mice exhibited increased vascular endothelial permeability and showed epineural microlesions in sciatic nerves, which were also observed in naïve GPR40−/− mice. Fittingly, expression of vascular endothelial growth factor-A (VEGF-A), an inducer of vascular permeability, was increased in diabetic wild-type and naïve GPR40−/− mice. GPR40 antagonists increased VEGF-A expression in murine and human endothelial cells as well as permeability of transendothelial barriers. In contrast, GPR40 agonists suppressed VEGF-A release and mRNA expression. The VEGF receptor inhibitor axitinib prevented diabetes-induced hypersensitivities and reduced endothelial and epineural permeability. Importantly, the GPR40 agonist GW9508 reverted established diabetes-induced hypersensitivity, an effect that was blocked by VEGF-A administration. Thus, GPR40 activation suppresses VEGF-A expression, thereby reducing diabetes-induced blood-nerve barrier permeability and reverting diabetes-induced hypersensitivities.

This article contains supplementary material online at https://doi.org/10.2337/figshare.18624830.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/journals/pages/license.
You do not currently have access to this content.