*

R. Xu and J. Fu are contributed equally to this work.

Patients with type 2 diabetes have a substantial risk of developing cardiovascular disease. Phosphodiesterase 4 (PDE4) dysregulation is of pathophysiological importance in metabolic disorders. To determine the role of PDE4 in diabetic cardiac dysfunction, mice fed with high-fat diet (HFD) were treated by pharmacological inhibition of PDE4 or cardiac specific knocking down of PDE4D. Mice on HFD developed diabetes and cardiac dysfunction with increased cardiac PDE4D5 expression. PDE4 inhibitor roflumilast can reverse hyperglycemia and cardiac dysfunction, accompanied by the decrease of PDE4D expression and increase of muscle-specific microRNA miR-1 level in hearts. Either cardiac specific PDE4D knockdown or miR-1 overexpression significantly reversed cardiac dysfunction in HFD-mice, despite persistence of hyperglycemia. Gain- and loss-of-function studies of PDE4D in cardiomyocytes implicated that inhibition of insulin-induced PDE4D protected cardiac hypertrophy by preserving miR-1 expression in cardiomyocytes through promoting cAMP-CREB-Sirt1 signaling-induced SERCA2a expression. We further revealed that insulin also induced PDE4D expression in cardiac fibroblasts, which causes cardiac fibrosis through TGF-β1 signaling-mediated miR-1 reduction. Importantly, the expression of PDE4D5 was increased in human failing hearts with diabetes. These studies elucidate a novel mechanism by which hyperinsulinemia-induced cardiac PDE4D expression contributes to diabetic cardiac remodeling through reducing the expression of miR-1 and upregulation of miR-1 target hypertrophy and fibrosis-associated genes. Our study suggests a therapeutic potential of PDE4 inhibitor roflumilast in preventing or treating cardiac dysfunction in diabetes in addition to lowering glucose.

This article contains supplementary material online at https://doi.org/10.2337/figshare.19723612.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.