Despite advances in the treatment of atherosclerotic cardiovascular disease, it remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single cell sequencing approach was utilised to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin induced-diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells and human THP-1 derived macrophages. We then performed a preclinical study using an AP-1 inhibitor in a diabetic Apoe-/- mouse model. Single cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from diabetic when compared to non-diabetic individuals. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes.

This article contains supplementary material online at

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.