The fundamental mechanisms whereby a diet affects susceptibility to or modifies autoimmune diseases are poorly understood. Despite excess dietary salt intake acts as a risk factor for autoimmune diseases, little information exists on the impact of salt intake on type 1 diabetes. To elucidate the potential effect of high-salt intake on autoimmune diabetes, non-obese diabetic (NOD) mice were fed with a high-salt diet (HSD) or a normal-salt diet from 6 to 12 weeks of age and monitored for diabetes development. Our results revealed that HSD accelerated diabetes progression with more severe insulitis in NOD mice in a CD4+ T cell-autonomous manner when compared to NSD group. Moreover, expression of IL-21 and SPAK in splenic CD4+ T cells from HSD-fed mice was significantly upregulated. Accordingly, we generated T cell-specific SPAK knockout (CKO) NOD mice and demonstrated that SPAK deficiency in T cells significantly attenuated diabetes development in NOD mice by downregulating IL-21 expression in CD4+ T cells. Furthermore, HSD-triggered diabetes acceleration was abolished in HSD-fed SPAK CKO mice when compared to HSD-fed NOD mice, suggesting an essential role of SPAK in salt-exacerbated T cell pathogenicity. Finally, pharmacological inhibition of SPAK activity using a specific SPAK inhibitor (closantel) in NOD mice ameliorated diabetogenesis, further illuminating the potential of a SPAK-targeting immunotherapeutic approach for autoimmune diabetes. Here, we illustrate that a substantial association between salt sensitivity and the functional impact of SPAK on T cell pathogenicity serves as a central player linking high-salt intake influences to immune-pathophysiology of diabetogenesis in NOD mice.

This article contains supplementary material online at

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.