Dipeptidyl peptidase (DPP)-4 and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice allowing reliable measurement with sensitive commercially available ELISA kits. Non-anesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 minutes after the glucose load. Samples taken at 5 and 10 minutes after the OGTT showed a minor increase in total, but not intact GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without a NEP-inhibitor (sacubitril) 30 minutes before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline, but 5-10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to 7-fold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps neprilysin. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.

This article contains supplementary material online at https://doi.org/10.2337/figshare.25103504.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.