Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily -conserved secretory protein containing seven-and-a-half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, that encodes PGRN. Mice with microglia-specific Grn gene depletion displayed dietdependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn gene depletion produced adverse outcomes like fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appear linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating dietinduced obesity.
This article contains supplementary material online at https://doi.org/10.2337/figshare.27004267.