Transplanted islet functional β-cell mass is measured by the β-cell secretory capacity derived from the acute insulin response to glucose-potentiated arginine (AIRpot), however, data are limited beyond one-year post-transplant for individuals with type 1 diabetes. We evaluated changes in β-cell secretory capacity in a single-center longitudinal analysis and examined relationships with measures of islet cell hormone metabolism and clinical measures of graft function (mixed-meal tolerance test [MMTT] C-peptide, BETA-2 score, and continuous glucose monitoring [CGM]). Eleven individuals received purified human pancreatic islets over one or two intra-portal infusions to achieve insulin-independence and were followed over a median (IQR) 6 (5-7) years. β-cell secretory capacity remained stable over 3-years before declining. Fasting glucagon and proinsulin secretory ratios under glucose-potentiation were inversely correlated with AIRpot. A functional β-cell mass of 40% normal predicted insulin-independence and was strongly predicted by MMTT C-peptide-to-glucose and BETA-2 score. A functional β-cell mass of >20% predicted excellent glycemic outcomes including ≤1% time <60 mg/dL, ≤2% time >180 mg/dL and ≥90% time-inrange 70-180 mg/dL. β-cell replacement approaches should target a functional β-cell mass >40% to provide sufficient islet reserve for sustained insulin-independence. MMTT C-peptide-to-glucose and BETA-2 score can inform changes in functional β-cell mass in the clinical setting.

This article contains supplementary material online at https://doi.org/10.2337/figshare.27946800.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.