Effective treatment strategies for diabetes-related pain are limited due to its complex pathogenesis, particularly brain mechanisms underlying this disease. The acid-sensing ion channel 1a (ASIC1a) emerges as a key player in the development and treatment of various types of pain. Here, we investigated the role of ASIC1a in diabetes-related pain and its molecular mechanisms in the anterior cingulate cortex (ACC). Our findings demonstrate that the up-regulation of ASIC1a expression drives enhanced activity of excitatory glutamatergic neurons in the ACC (ACCGlu), promoting the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic male mice. Pharmacological inhibition and genetic knockout of ASIC1a in ACCGlu neurons significantly reduced neuronal activity and alleviated mechanical and thermal pain sensitizations in STZ-induced diabetes. Furthermore, increased levels of TNF-α in the ACC up-regulated ASIC1a through triggering NF-κB pathways, which led to the development of diabetes-related pain. Notably, the clinically used medication, infliximab, exhibited therapeutic effects on diabetes-related pain via its influencing on TNF-α/NF-κB/ASIC1a pathway in STZ mice. Collectively, this study identifies ASIC1a as a potential therapeutic target for diabetes-related pain, and the neutralization of TNF-α leads to pain relief through the TNF-α/NF-κB/ASIC1a pathway in the ACC. These findings hold promise for the development of the new clinical therapeutic strategies for diabetes-related pain.

This article contains supplementary material online at https://doi.org/10.2337/figshare.28639466.

This content is only available via PDF.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

Article PDF first page preview

First page of Up-regulation of acid-sensing ion channel 1a in the anterior cingulate cortex by TNF-α/NF-κB pathway contributes to diabetes-related pain
You do not currently have access to this content.