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Common Single Nucleotide Polymorphisms in TCF7L2
Are Reproducibly Associated With Type 2 Diabetes and
Reduce the Insulin Response to Glucose in Nondiabetic
Individuals
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Recently, common noncoding variants in the TCF7L2 gene

were strongly associated with increased risk of type 2

diabetes in samples from Iceland, Denmark, and the U.S.

We genotyped 13 single nucleotide polymorphisms (SNPs)

across TCF7L2 in 8,310 individuals in family-based and

case-control designs from Scandinavia, Poland, and the

U.S. We convincingly confirmed the previous association of

TCF7L2 SNPs with the risk of type 2 diabetes (rs7903146T

odds ratio 1.40 [95% CI 1.30–1.50], P � 6.74 � 10�20). In

nondiabetic individuals, the risk genotypes were associ-

ated with a substantial reduction in the insulinogenic index

derived from an oral glucose tolerance test (risk allele

homozygotes have half the insulin response to glucose of

noncarriers, P � 0.003) but not with increased insulin

resistance. These results suggest that TCF7L2 variants

may act through insulin secretion to increase the risk of

type 2 diabetes. Diabetes 55:2890–2895, 2006

T
ype 2 diabetes is highly heritable, but known
variants explain only a small fraction of the
overall genetic risk in the population. Recently,
Grant et al. (1) reported a strong association of

variants in TCF7L2 with increased risk of type 2 diabetes
in an Icelandic sample, and this association was confirmed
in Caucasian samples from Denmark and the U.S. (com-
bined odds ratio [OR] 1.56, P � 4.7 � 10�18). Testing of
this association in other well-phenotyped samples is
needed to 1) validate the association, 2) estimate the true
effect size, and 3) identify effects on intermediate traits
that may suggest how TCF7L2 variants act (e.g., through
changes in insulin secretion, insulin resistance, BMI,
waist-to-hip ratio).

TCF7L2 has been implicated as a member of the Wnt
signaling pathway and was previously well studied only in
colon cancer. However, based on its role in intestinal cells
(2), Grant et al. (1) proposed that variants of TCF7L2 may
alter levels of glucagon-like peptide 1, which influences
insulin secretion from the �-cells of the pancreas. Thus,
one hypothesis is that TCF7L2 might influence the risk of
type 2 diabetes by influencing insulin secretion. Alterna-
tively, a gene increasing the risk of diabetes could act
through insulin action or through currently unknown
mechanisms.

To evaluate these questions, we selected tag SNPs to
capture common variation in a 64.6-kb region of strong
linkage disequilibrium surrounding the most significant
association signal and spanning intron 3, exon 4, and
intron 4 of TCF7L2. We genotyped 13 tag SNPs that
capture 32 of 44 variants with r2 � 0.8 (mean r2 � 0.985)
in the phase II HapMap CEU population (3); all 5 SNPs that
were most highly correlated with the DG10S478 allele X in
the original report (1) were directly genotyped.

The tag SNPs were genotyped in well-characterized
family-based and case-control samples from Scandinavia,
Poland, and the U.S.; phenotypic characteristics of all
samples are described in Table 1. We included five previ-
ously described patient samples that have formed the
basis of multiple previous publications from our research
group: 333 Swedish and Finnish trios; 2 Scandinavian
case-control samples with 918 and 1,010 subjects, respec-
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tively; a Polish case-control sample with 2,018 subjects;
and a U.S. Caucasian case-control sample with 2,452
individuals (4–11). A smaller fraction of the samples
studied have not previously been described: 1) a case-
control sample (444 subjects) and 130 discordant sibpairs
from Botnia (a Swedish-speaking isolate of Finland) and
2) a case-control sample (266 subjects) and 106 discordant
sibpairs from Sweden and Finland. All Scandinavian case-
control samples were matched for age, sex, BMI, and
geographic region (described in more detail in RESEARCH

DESIGN AND METHODS).
Association of SNPs in TCF7L2 with type 2 diabetes was

strongly confirmed in these samples (Table 2 and online
appendix Table 1 [available at http://diabetes.diabetes

journals.org]). We found that rs7903146 was most signifi-
cantly associated with the risk of type 2 diabetes (OR 1.40
[95% CI 1.30–1.50], P � 6.74 � 10�20) in agreement with
the original report (best SNP) (1). Heterozygous and
homozygous carriers of the risk allele had genotype rela-
tive risks of 1.40 (1.27–1.55) (P � 3.22 � 10�11) and 1.86
(1.55–2.23) (P � 1.38 � 10�11) relative to noncarriers,
which is consistent with an additive model. Overall, given
that the original report was highly significant (P � 10�18)
(1), our results provided an independent P value of 10�20,
and Groves et al. (unpublished observations) observed a P
value of 10�14; this association is by far the most convincing
and broadly relevant risk factor for type 2 diabetes yet found
in the human population.

TABLE 1
Clinical characteristics of study samples

Sample Sex (M/F)
Age

(years)
BMI

(kg/m2)
Fasting plasma

glucose (mmol/l)
Plasma glucose at
2-h OGTT (mmol/l) Reference

Scandinavian trios
Diabetes/IGT/IFG 176/157 39 � 9 27 � 5 7.2 � 2.6 8.5 � 2.9 4
NGT 187/192 31 � 10 24 � 5 5.2 � 0.5 5.6 � 1.1

Scandinavian C/C
Diabetes/sIGT 247/212 61 � 10 28 � 5 9.8 � 3.4 15.0 � 5.3 4
NGT 247/212 60 � 10 26 � 4 6.2 � 1.8 6.8 � 2.8

Swedish C/C
Diabetes/sIGT 267/247 66 � 12 28 � 4 8.5 � 2.5 ND* 5
NGT 267/247 66 � 12 28 � 4 4.8 � 0.7 ND

Genomics Collaborative
Poland C/C

Diabetes 422/587 62 � 10 30 � 5 8.9 � 4.0 ND† 6
NGT 422/587 59 � 7 26 � 4 4.8 � 1.2 ND

Genomics Collaborative U.S.
C/C

Diabetes 644/582 63 � 11 33 � 7 9.8 � 3.0 ND‡ 6
NGT 644/582 61 � 10 27 � 5 5.1 � 0.9 ND

Botnia C/C
Diabetes 101/121 65 � 10 28 � 4 9.1 � 2.8 14.7 � 5.1 New
NGT 101/121 57 � 10 27 � 4 5.2 � 0.5 5.2 � 1.4

Swedish/Finnish C/C
Diabetes 63/70 66 � 10 28 � 4 9.6 � 3.1 16.3 � 4.4 New
NGT 63/70 55 � 9 26 � 4 5.3 � 0.6 5.6 � 1.0

Swedish/Finnish sibs
Diabetes 57/49 60 � 11 30 � 5 10.8 � 3.7 15.2 � 4.8 New
NGT 40/66 61 � 12 27 � 4 5.3 � 0.4 6.1 � 1.0

Botnia sibs
Diabetes 55/75 64 � 12 28 � 5 9.0 � 2.7 14.8 � 5.3 New
NGT 56/74 62 � 12 26 � 4 5.5 � 0.5 6.1 � 1.2

Data are means � SD. Plasma glucose was measured at fasting and 2 h after an OGTT. *HbA1c (A1C) � 6.5 � 1.5%; †A1C � 7.9 � 1.3%; ‡A1C �
8.0 � 3.1%. C/C, case/control subjects; ND, not determined; sIGT, severe IGT.

TABLE 2
Association of TCF7L2 SNP rs7903146 with risk of type 2 diabetes and model-free estimates of genotype relative risks

Allele OR (95% CI) P

Total sample* T 1.40 (1.30–1.50) 6.74 � 10�20

Case/control subjects only† T 1.39 (1.29–1.50) 1.55 � 10�17

Genotype Genotype relative risks (95% CI) P

Heterozygotes† TC vs. CC 1.40 (1.27–1.55) 3.22 � 10�11

Homozygotes† TT vs. CC 1.86 (1.55–2.23) 1.38 � 10�11

Homozygotes vs. Heterozygotes† TT vs. TC 1.30 (1.08–1.57) 0.00269

Genotype relative risks are relative to noncarriers or to heterozygote carriers as indidcated. One-tailed P value: *results from all 9 samples
or †6 case-control samples combined by Mantel-Haenszel meta-analysis.
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The strongest single variant (rs7903146) was individu-
ally significant (P � 0.05) in the six largest samples
(including all previously published trio and case-control
samples) and trended in the expected direction in the
three smaller remaining samples (Table 3). We have pre-
viously published a lack of association to many candidate
genes in these samples (4–8,10,11); replication of TCF7L2
association in each subsample provides a positive control
for those previous studies, clearly demonstrating that the
samples can be used to distinguish true diabetes genes of
this magnitude and robustness from statistical fluctua-
tions. To test if the best result was the only signal of
association observed at this locus, we performed logistic
regression analysis conditional on rs7903146. No addi-
tional signal of association was observed (data not
shown), suggesting that the entire signal observed stems
from rs7903146 or from a closely correlated variant.

We tested for epistasis between TCF7L2 rs7903146 and

two other common variants known to be causally associ-
ated with the risk of type 2 diabetes: peroxisome prolif-
erator–activated receptor � P12A and Kir6.2 E23K (4,5,12).
No significant genetic interactions were seen (online ap-
pendix Table 2).

We next examined the correlation of TCF7L2 genotypes
with covariates of sex, age of onset, and BMI in case and
control subjects to test if TCF7L2 variants contribute to
risk of type 2 diabetes through an effect on these covari-
ates. No heterogeneity by sex was observed in the case-
control samples (male [n � 3,288] OR 1.46 [95% CI
1.31–1.62], P � 8.75 � 10�12 and female [n � 3,424] 1.32
[1.19–1.47], P � 3.79 � 10�7; Phomogeneity � 0.20). Further-
more, in case subjects, TCF7L2 genotypes did not associ-
ate with the age of onset of diabetes (n � 1,856, mean
[�SD] TT � 55 � 11, TC � 55 � 12, and CC � 56 � 12; P �
0.64). In addition, no significant association to BMI was
observed (Table 4). Thus, while some variants may prove

TABLE 3
Association of rs7903146 with type 2 diabetes in each subsample

Sample n OR (95% CI) One-tailed P value MAF

Case-control group
Scandinavian 946 1.27 (1.03–1.58) 0.0277 0.23
Swedish 966 1.45 (1.18–1.77) 2.84 � 10�4 0.28
Genomics Collaborative
Polish 1,942 1.38 (1.20–1.59) 1.04 � 10�5 0.27
Genomics Collaborative U.S. 2,246 1.45 (1.27–1.64) 1.54 � 10�8 0.32
Botnia 430 1.47 (1.06–2.03) 0.0195 0.22
Swedish/Finnish 260 1.02 (0.69–1.51) 0.921 0.25
All* 6,790 1.39 (1.29–1.50) 1.55 � 10�17 0.25

Family-based group
Botnia sibs 260 1.83 (0.75–1.63) 0.0863
Swedish/Finnish sibs 212 1.56 (0.84–2.91) 0.160
Scandinavian trios† 756 1.42 (1.09–1.86) 0.0101
All 1,228 1.48 (1.17–1.87) 4.69 � 10�4

Combined (all samples)* 8,018 1.40 (1.30–1.50) 6.74 � 10�20

*Data combined by Mantel-Haenszel meta-analysis; no heterogeneity was observed (P � 0.60 by Breslow Day test). †Diabetes trios (n � 91)
OR 1.79 (95% CI 1.09–2.93) (P � 0.02); impaired fasting glucose trios (n � 163) 1.43 (0.98–2.09) (P � 0.06); IGT trios (n � 36) 1.18 (0.53–2.64)
(P � 0.68). MAF, minor allele frequency.

TABLE 4
Mean trait values by genotype

Mean trait values (�SD) by genotype Two-tailed P value
Phenotype n TT CT CC Additive Recessive TT vs. CC TT vs. TC TC vs. CC

BMI (kg/m2) 8,258 28.4 � 5.4 28.4 � 5.3 28.2 � 5.2 0.31
n 995 42 322 631

Ins index
(mU/mmol) 10.9 � 12.7 16.5 � 50.5 18.1 � 33.1 0.0030 0.0010 0.0009 0.0031 0.3767

Disp index
(mU2/l2) 22.5 � 28.9 35.8 � 112.9 42.6 � 79.9 0.0044 0.0011 0.0012 0.0019 0.6278

Fasting insulin
(mU/l) 7.27 � 4.24 9.19 � 6.66 8.94 � 6.02 0.3423 0.1405 0.1537 0.1340 0.7685

HOMA-IR
(mmol �
mU/l2) 1.88 � 1.29 2.30 � 2.06 2.19 � 1.63 0.2561 0.1286 0.1590 0.1007 0.5191

n 721 27 236 454
AUCins* 3,911 � 3,658 4,971 � 3,176 5,229 � 3,248 0.0007 0.0004 0.0002 0.0048 0.1250
AUCglu* 339.8 � 262.8 271.4 � 214.5 270.0 � 195.3 0.1775 0.0841 0.0778 0.1266 0.9297
AUCins/AUCglu* 23.46 � 39.75 24.33 � 71.06 32.14 � 243.05 0.0023 0.0025 0.0015 0.0135 0.1640

Traits were log transformed. *Four negative values of AUCins were removed, and 26 negative values of AUCins/AUCglu were removed. Insulin
and glucose units used for all calculations were mU/l and mmol/l, respectively. AUC, AUC during OGTT; Disp index, insulin disposition index;
Ins index, insulinogenic index.
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to be heterogeneous, associated only in substrata of sex,
BMI, or other genotypes, common variation in TCF7L2 is
associated with type 2 diabetes across the measured
covariates.

The order and relative contributions of defects in insulin
resistance and insulin secretion to the pathogenesis of
type 2 diabetes remain controversial (13,14). Some postu-
late that type 2 diabetes is caused primarily by defects in
insulin resistance, followed by a failure of pancreatic
�-cells to compensate for increased insulin demand (15).
Conversely, type 2 diabetes genes identified thus far (the
maturity-onset diabetes of the young genes that cause
monogenic forms of type 2 diabetes and Kir6.2) act
through reduced insulin secretion without insulin resis-
tance in carriers before the onset of disease (16,17). Each
additional gene that is truly associated with type 2 diabe-
tes helps inform the relative contributions of these two
mechanisms.

We found no effect of TCF7L2 rs7903146 on oral glucose
tolerance test (OGTT)-derived measures of insulin resis-
tance in 995 nondiabetic individuals (Table 4). We did see
a dramatic effect, however, on insulin secretion as mea-
sured by the OGTT (Table 4). The OGTT provides rough
measures of insulin secretion and resistance and has been
widely used in clinical investigations of type 2 diabetes.
Individuals homozygous for the rs7903146 risk allele have
a significant 50% reduction in insulinogenic index (P �
0.003) and insulin disposition index (P � 0.004). We also
observed a significant reduction in the area under the
curve (AUC) for insulin during the OGTT (P � 0.0007) and
AUCinsulin/AUCglucose (P � 0.002), suggesting that the poly-
morphism not only influences the early insulin response to
glucose but also could have an effect on the capacity of the
�-cells to secrete insulin. These associations are stronger
in risk allele homozygotes than in heterozygous carriers,
and a trend is seen in heterozygous carriers compared
with noncarriers.

Our results replicate the strong association of TCF7L2
variants with the risk of type 2 diabetes. The risk model for
the most significantly associated SNP, rs7903146, was
slightly weaker than the original report, perhaps because
the magnitude of the risk effect may have been overesti-
mated by Grant et al. (1), which was expected due to the
winners curse. Consistent with this, Groves et al. (unpub-
lished observations) estimate an effect size similar to that
in our study (OR 1.36 and 1.40, in both replications, vs. 1.54
for the same SNP in the original report). Nevertheless,
TCF7L2 variation contributes more powerfully to in-
creased risk of type 2 diabetes than any other gene
identified thus far. Consistent replication across European
populations confirms that the causal TCF7L2 variant
influences disease risk reproducibly, without the need to
yet invoke population-specific effects.

We observed an insulin secretion defect in nondiabetic
individuals homozygous for risk alleles of TCF7L2, sug-
gesting that as in maturity-onset diabetes of the young and
the common E23K polymorphism in Kir6.2, the primary
defect attributable to a common variation in the TCF7L2
region is reduced insulin secretion rather than insulin
resistance (12,16,17). However, OGTT measures used here
provides only rough estimates of insulin secretion, and
follow-up work will be necessary to understand the nature
of the defect in insulin secretion and any possible effects
on insulin action.

TCF7L2 has not previously been implicated in type 2
diabetes and would not have been an obvious diabetes

gene candidate. (A PubMed search for the keywords
“TCF7L2” or “TCF4” reveals 218 articles but none that
share the term “diabetes” before the Grant et al. [1]
publication.) The discovery of this gene reinforces that
type 2 diabetes is an endocrine disease with its origin in
multiple organ systems, now possibly including the intes-
tine. Post hoc, because TCF7L2 activates glucagon-like
peptide 1 in a cell-specific manner, a putative mechanism
to influence blood glucose homeostasis could be pro-
posed, and reduced insulin secretion observed here is
consistent with this mechanism (1). However, the causal
variant or functional defect in TCF7L2 has not yet been
found. (It could be rs7903146 itself, a proxy within a
broader region of this gene, or a proxy even in an adjacent
gene.) More extensive genotyping and sequencing is
clearly warranted, as are functional studies of the most
associated alleles to document that they function through
TCF7L2 rather than some adjacent gene.

The identification of this gene has interesting implica-
tions for the several diabetes whole-genome association
studies planned in the coming year. There has been much
speculation that common variants responsible for com-
mon diseases such as type 2 diabetes, at most, exert
extremely modest effects, owing to an underlying complex
genetic architecture (18–20). Some have even questioned
whether disease-influencing common variants exist or can
be found with linkage disequilibrium approaches (21,22).
Grant et al. (1) discovered an association to TCF7L2
during a follow-up of a putative linkage peak, but as they
state, the finding is likely coincidental since “the median
allele-sharing LOD score generated with our previous
familial samples is less than 0.1.” That is, this variant could
not possibly have generated the linkage peak but could be
(and was) found by systematic studies of common varia-
tion for the association with type 2 diabetes. Unless
TCF7L2 is the only such gene in the genome, which is
unlikely given that a focused search of 	10.5 Mb led
coincidentally to its discovery, more diabetes genes of
similar effect are likely to be found by ongoing whole-
genome association studies.

RESEARCH DESIGN AND METHODS

The diabetic samples include a previously described sample of 333 Scandina-
vian parent-offspring trios (163 offspring with impaired fasting glucose, 36
with impaired glucose tolerance [IGT], and 134 with type 2 diabetes) (4) and
two previously described Scandinavian case-control samples consisting of 954
and 1,028 subjects, individually matched for age, sex, BMI, and geographic
region of origin (4,5). World Health Organization 1998 definitions of type 2
diabetes, IGT, impaired fasting glucose, and normal glucose tolerance (NGT)
were used for these samples, and severe IGT was defined as 2-h OGTT plasma
glucose �8.5 mmol/l but �10 mmol/l. This study also includes two previously
described case-control samples from Poland (2,018 subjects) and the U.S.
(2,452 subjects) individually matched for sex, age, and geographic origin, both
collected by Genomics Collaborative (6,11). For these Polish and U.S.
samples, case subjects met the American Diabetes Association 2003 criteria
for type 2 diabetes, and control subjects had fasting plasma glucose �7
mmol/l. Finally, the study included four newly selected Scandinavian samples:
1) a case-control sample (444 subjects) from Botnia (a Swedish-speaking
isolate of Finland) individually matched by age, sex, and BMI; 2) 130 sibpairs
from Botnia, discordant for type 2 diabetes; 3) a case-control sample from
Sweden and Finland (266 subjects) individually matched by age, sex, BMI, and
geographic origin; and 4) 106 sibpairs discordant for type 2 diabetes from
Sweden and Finland. For the new case-control and family-based samples,
diabetic case subjects were defined by the American Diabetes Association
2003 criteria, had an age of onset �35 years, and were GAD antibody negative.
Control subjects had NGT (fasting plasma glucose �6.1 mmol/l and 2-h OGTT
plasma glucose �7.8 mmol/l). Age matching required that control subjects be
normal glucose tolerant at age �5 years from onset age of matched case. For
discordant sibpairs, the youngest sibling who fulfilled the case inclusion
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criteria was matched with the eldest normal glucose tolerant sibling. Case and
control subjects were recruited from the previously described Botnia Study,
which includes families from the Botnia region on the western coast of
Finland and families from other parts of Finland and Sweden (23). All patient
samples were approved by the human subject institutional review board at
respective institutions, and informed consent was obtained from all subjects.
Insulin measures during the OGTT were available for a subset of individuals
as previously described (7,11); genotype-phenotype correlation was examined
for rs7903146 with fasting insulin, insulinogenic index as a measure of early
insulin response to glucose ([Ins30 � fasting insulin]/[Gluc30 � fasting
glucose]), homeostatis model assessment of insulin resistance ([fasting glu-
cose � fasting insulin]/22.5), insulin disposition index (insulinogenic index �
homeostatis model assessment of insulin resistance), and AUCinsulin, AUCglucose,
and AUCinsulin/AUCglucose (AUCs determined by the trapezoidal method).
Genotyping. Patient DNA was isolated from whole blood, whole genome
amplified using REPLI-G (Qiagen), and purified using the Nucleofast (Clon-
tech). Genotyping was performed by primer extension of multiplex products
with detection by MALDI-TOF mass spectroscopy using a Sequenom platform.
Genotyping success rate was 99%, and concordance rate, based on 889
duplicate comparisons for each of the 13 SNPs, was 99.58%.
Statistical analysis. Tag SNPs were selected using Tagger (24); 12 SNPs
were untested. Simple 
2 analysis was used to test the association of SNPs
with type 2 diabetes in the matched case-control subjects, a transmission
disequilibrium test was performed in the trios (25), and the discordant allele
test was carried out in the sibpairs (26). Results from each sample were
combined by Mantel-Haenszel meta-analysis of ORs; homogeneity was tested
using the Breslow Day test, and no heterogeneity was found. Logistic
regression for each SNP with diabetes-affected status was performed condi-
tionally on rs7903146 using Whap (http://pngu.mgh.harvard.edu/	purcell/
whap). For epistasis analysis, pairwise combinations of SNPs rs7903146 with
peroxisome proliferator–activated receptor � P12A and Kir6.2 E23K were
tested for association with type 2 diabetes using PLINK (http://pngu.mgh.
harvard.edu/	purcell/plink). Log-transformed quantitative traits were com-
pared by ANOVA across three genotypic classes of rs7903146; two-tailed t

tests were performed for other models/risk estimates. Unadjusted Pnominal

values are reported; results were similar after adjustment for sex, age, and
BMI.
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