Many of the chronic complications of diabetes mellitus involve defects in the connective tissue such as poor wound healing, diminished bone formation, and decreased linear growth. Because collagen is the major protein component of these connective tissues, we examined collagen production in diabetic rats as a probe of this generalized defect in connective tissue metabolism. Doses of streptozocin ranging from 35 to 300 mg/kg were used to induce diabetes of graded metabolic severity in rats. Parietal bone or articular cartilage was removed and incubated at 37°C with 5 μCi L-[5-3H]proline for 2 h, and collagen and noncollagen protein production were quantitated after separation with purified bacterial collagenase. Within 2 wk after induction of diabetes, collagen production was significantly reduced in bone and cartilage from diabetic rats to 52% (P < .01) and 51% (P < .01) of control (buffer-injected) levels, respectively. In contrast, noncollagen protein production in bone and cartilage from diabetic animals was no different from in tissue from control rats. The correlation between collagen relative to total protein production (relative rate) and the degree of hyperglycemia was highly significant for both bone (r = −.77, P < .001) and cartilage (r = −.87, P < .001). Other factors found to correlate with altered collagen production were the duration of diabetes and the amount of weight loss. Thus, diabetes is associated with a marked decrease in collagen production, which was seen early after induction of diabetes and was specific when compared with noncollagen protein production. Cumulative effects of these marked changes in collagen production may contribute to the chronic connective tissue complications in diabetes.

This content is only available via PDF.