The JCR:LA-cp rat develops an extreme obese/insulin-resistant syndrome such that by 12 weeks of age, there is no longer any insulin-mediated glucose turnover. At 4 weeks of age, obese and lean rats have essentially identical basal and insulin-mediated glucose uptake in skeletal muscle. By 8 weeks of age, however, the obese rats no longer exhibit such intake. Plasma insulin concentrations in the normal fed state show only small increases up to 4 weeks, with a rapid rise to a marked hyperinsulinemia thereafter, with an age at half-development of 5.5 weeks. Plasma triacylglycerol concentrations in fed obese rats are elevated at 3 weeks and rise rapidly thereafter. The triacylglycerol content of skeletal muscle is significantly elevated in the obese rats at 4 weeks of age. Histological examination of Oil Red O-stained muscle tissue and transmission electron microscopy shows the presence of intracellular lipid droplets. Treatment with the potent triacylglycerol-lowering agent MEDICA 16 (beta,beta'-tetramethylhexadecanedioic acid) from 6 weeks of age reduces plasma lipids markedly, but it reduces body weight and insulin resistance only modestly. In contrast, treatment with MEDICA 16 from the time of weaning at 3 weeks of age results in the normalization of food intake and body weight to over 8 weeks of age. The development of hyperinsulinemia is also delayed until 8.5 weeks of age, and insulin levels remain strongly reduced. Plasma triacylglycerol concentrations remain at the same level as in lean rats, and neither an elevated muscle triacylglycerol content nor intracellular lipid droplets are found at 4 weeks of age. The results indicate that insulin resistance develops in the young animals and is not directly due to a genetically determined defect in insulin metabolism. The mechanism of induction instead appears to be related to an exaggerated triacylglycerol metabolism.
Abstract|
May 01 1998
Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16.
J C Russell;
J C Russell
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
G Shillabeer;
G Shillabeer
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
J Bar-Tana;
J Bar-Tana
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
D C Lau;
D C Lau
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
M Richardson;
M Richardson
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
L M Wenzel;
L M Wenzel
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
S E Graham;
S E Graham
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
P J Dolphin
P J Dolphin
Department of Surgery, University of Alberta, Edmonton, Canada. [email protected]
Search for other works by this author on:
Citation
J C Russell, G Shillabeer, J Bar-Tana, D C Lau, M Richardson, L M Wenzel, S E Graham, P J Dolphin; Development of insulin resistance in the JCR:LA-cp rat: role of triacylglycerols and effects of MEDICA 16.. Diabetes 1 May 1998; 47 (5): 770–778. https://doi.org/10.2337/diabetes.47.5.770
Download citation file: