Fluorescent proteins have been extensively used as protein "tags" to study the subcellular localization of proteins and/or their translocation upon stimulation or as markers for transfection in transient and stable expression systems. However, they have not been frequently used as reporter genes to monitor stimulus-induced gene expression in mammalian cells. Here we demonstrate the use of fluorescent proteins to study stimulus-induced gene transcription. The general applicability of the approach is exemplified by doxycyclin-(Tet-On) and phorbol 12-myristate 13-acetate-induced (c-fos) promoter activation, with green fluorescent protein (GFP) and red fluorescent protein (DsRed) as semiquantitative and immediate reporters, of transcription activation. Under the control of beta-cell-specific promoters, such as the rat insulin 1 promoter or the rat upstream glucokinase promoter, this approach allowed us to monitor online glucose-induced gene transcription in primary beta-cells at the single-cell level as well as in the context of the islet of Langerhans. Applying discretely detectable fluorescent proteins, for example GFP and DsRed, enabled us to simultaneously monitor stimulus-induced transcription by two different promoters in the same cell.

This content is only available via PDF.