Pancreatic β-cells continuously sense blood glucose levels and secrete insulin to maintain normoglycemia. In β-cells, ATP generated by glycolysis promotes the closure of ATP-sensitive K+ channels, thereby increasing intracellular calcium and ultimately insulin secretion. 14-3-3 proteins, and in particular 14-3-3ζ, have been found to regulate ATP synthase and mitochondrial respiration, suggesting that members of this family of scaffold proteins in β-cells may influence glucose-stimulated insulin secretion (GSIS) and glucose homeostasis. To date, we have identified critical contributions of 14-3-3 proteins to GSIS. In mouse and human islets, pan-inhibition of 14-3-3 proteins with cell-permeable inhibitors potentiated ex-vivo GSIS. This was associated with increased mitochondrial function, as oxygen consumption and ATP synthesis rates were significantly enhanced. Moreover, increased ATP production was confirmed with luciferase-based assays. Of the seven isoforms, we previously reported critical metabolic roles of 14-3-3ζ in glucose homeostasis, and to understand its role in β-cells, β-cell-specific knockout mice (Ins1CreThor:14-3-3ζfl/fl, β-KO) were generated. When compared to control mice, no differences in body weights or glucose and insulin tolerance were observed, but β-KO mice displayed significantly enhanced insulin secretion following i.p. glucose (2 g/kg), and ex vivo islet perifusion studies revealed enhanced 2nd-phase secretion of GSIS from β-KO islets. Similar to pan-14-3-3 inhibition, increased mitochondrial activity and ATP synthesis were detected in islets of β-KO mice.

In summary, these results demonstrate critical functions of 14-3-3ζ and its related proteins in mitochondrial activity in β-cells and the regulation of GSIS. These data also suggest that 14-3-3ζ inhibition may represent a promising target to enhance pancreatic β-cell function in the context of diabetes.

Disclosure

Y. Mugabo: None. M. Galipeau: None. J. Tan: None. E. Fadzeyeva: None. R. Grygorczyk: None. G.E. Lim: None.

Funding

Canadian Institutes of Health Research; Canada Research Chairs Program (PJT-153144)

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.