People with Cystic Fibrosis (pwCF) exhibit a defect of insulin secretion[1], potentially leading to Cystic Fibrosis Related Diabetes. Little information exists about the molecular mechanism that links the defect of insulin secretion to the CF-causing variants of the CFTR gene[2,3]. We sought to describe the relationship between the CFTR function and β-cell function in pwCF. We studied 341 patients (193 (57%) females, 271 (79%) pancreatic insufficient, median (IQR) age 19 (15, 24) years) with the oral glucose tolerance test (OGTT), sampling glucose, insulin, and C-peptide before and every 30 minutes over the 2 hour OGTT, modeling β-cell function expressed by the β-cell glucose sensitivity[4]. Each patient was characterized by either having at least one allele with a residual function mutation (group 1, 85 (25%)), or a minimal function mutation on both alleles (group 2, 255 (75%) ). After adjusting for sex, pancreatic insufficiency (PI), and age, patients in group 1 displayed better glucose tolerance at all OGTT timepoint (all p=<0.05), and better β-cell glucose sensitivity (22 pmol×min⁻¹×m⁻²×mM⁻¹; 95% CI 9.6, 34; p=<0.001).Within the whole sample, 162 patients (82 (51%) females, 136 (84%) of group 2, 139 (86%) pancreatic insufficient, median (IQR) age 20 (15, 25) years) carried variants on both alleles that had been tested for chloride conductance in the Fischer Rat Thyroid cell line (http://cftr2.org). The mean chloride conductance of the most functional allele was positively related to β-cell glucose sensitivity (0.96; 95% CI 0.13, 1.8; p=0.025), with no PI interaction (interaction term -0.63; 95% CI -3.7, 2.4; p=0.7), and adjusting for differences in sex and age.

In conclusion, we have shown that CFTR function is quantitatively related to β-cell function in pwCF. Even though exocrine PI is associated with worse β-cell function, the association of CFTR residual function and β-cell glucose sensitivity is not necessarily mediated by exocrine PI.

Disclosure

A. Foppiani: None. F. Ciciriello: None. F. Alghisi: None. V. Lucidi: None. F. Sileo: None. M. Lucanto: None. F. Corti: None. C. Colombo: None. A. Battezzati: None.

Funding

Cystic Fibrosis Research Foundation FFC#16/2005, FFC#21/2013, FFC#20/2016, and FFC#24/2019

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.