Metabolic clearance rate (MCR) of glucose has been defined as the rate of glucose utilization divided by the glucose concentration. This model of glucose transport has been widely used as a measure of hormonally regulated glucose disposal, on the assumption that glucose disposal rate is proportional to glucose concentration. To test this assumption, the relationship between glucose concentration and disposal rate was studied in man during infusion of somatostatin ± exogenous insulin to achieve fixed plasma insulin levels of 1,18, and 46 μU/ml on separate days. When glucose concentration was increased to more than twice basal fasting levels, the glucose disposal rate increased significantly at all three insulin levels. However, the increase was not proportional to the rise in glucose concentration, and MCR fell by 38%, 16%, and 11% at the low, medium, and high insulin levels, respectively. These results are explained by an alternative model of glucose transport in which insulin-independent tissues such as brain have a relatively fixed glucose uptake, while other tissues have glucose transport systems which take up glucose at a rate proportional to its plasma concentration. We conclude that MCR of glucose is not a good measure of hormonally regulated glucose disposal because it is partially dependent on the glucose concentration, particularly at low insulin levels.

This content is only available via PDF.