The BB rat develops a spontaneous type I diabetic syndrome with anti-islet autoimmunity. Sera from diabetic and nondiabetic BB rats (from diabetes-prone litters), nondiabetic BB rats (from low-risk lines), and nondiabetes-prone Sprague-Dawley rats were collected twice a week from age 40 days to 160 days. Sera were tested for: (1) complement-dependent toxicity to 51Crlabeled islet cells in vitro; (2) immunoglobulin binding to RIN-5 F insulinoma cells; and (3) ability to selectively suppress insulin secretion from normal islets in vitro. All sera from rats that subsequently became diabetic or glucose-intolerant were toxic to islet cells from various rat strains in the presence of complement. They were toxic neither to hepatocytes nor to fibroblasts. The toxic potency was associated with the globulin fraction. It was, in most cases, maximal either before or immediately after the onset of the disease. Sera from the nondiabetes-susceptible BB rats and the rats which, in diabetes-prone litters, died too early to be classified tended toward greater toxicity to islets. Immunoglobulins from diabetic sera bound to RIN-5 F cells more than did the serum globulins from other groups, their maximal binding capacity occurring afterthe onset of diabetes. Furthermore, BB diabetic sera were capable of selectively inhibiting the insulin secretion from normal rat islets in vitro either in the presence or, in some cases, in theabsence of complement. The A- and D-cell functions were not suppressed. The combination of such results suggests the presence of one or more antibodies capable of binding to beta cells, inhibiting their function, and inducing their lysis. These antibodies may contribute to the beta cell disruption in this model of diabetes.

This content is only available via PDF.