The effect of calcitonin gene-related peptide (CGRP) on glucose metabolism was investigated in conscious and unrestrained rats in vivo. Intravenous injection of rat CGRP (5.67 and 0.567 nmol/kg) caused a significant, dose-dependent increase in plasma glucose concentration and a simultaneous dose-dependent increase in plasma insulin level. In contrast, plasma glucagon level was not changed. On the other hand, intravenous infusion of CGRP (46.6 pmol · kg−1 · min−1) decreased tolerance to intragastric administration of glucose (IGGTT). Plasma insulin response to IGGTT, however, was not affected by CGRP infusion. Moreover, although intravenous injection of CGRP (5.67 nmol/kg) elicited a significant increase in plasma epinephrine and norepinephrine concentrations, concomitant administration of epinephrine and norepinephrine, inducing a more prominent rise in plasma catecholamines than those induced by CGRP, affected neither plasma glucose nor insulin levels. Finally, plasma insulin levels obtained by simulating CGRP-induced changes in plasma glucose or glucose plus catecholamine levels by infusion of glucose or glucose plus catecholamines were not different from those induced by CGRP injection. These results suggest that CGRP has a hyperglycemic action that is not mediated by sympathetic outflow in conscious rats, and inhibition of insulin secretion, if any, does not play a major role in this hyperglycemic action of CGRP. We have demonstrated specific CGRP receptors linked to adenylate cyclase activation in rat liver plasma membranes; this hyperglycemic effect of CGRP in vivo may be partly due to its direct action on the liver.

This content is only available via PDF.