Early functional disturbances in nerve, retina, and lens in diabetes mellitus appear to result from a common mechanism involving increased polyol-pathway activity with an associated effect on tissue myo-inositol metabolism. We tested the role of increased polyol-pathway activity in the early glomerular hemodynamic abnormalities in experimental diabetes in rats with dietary myo-inositol supplementation or the administration of sorbinil, an aldose reductase inhibitor. Each maneuver prevented the glomerular hyperfiltration of early streptozocin-induced diabetes and reversed the hyperfiltration of established diabetes of 10 days' duration. We also found that the abnormal response to captopril in diabetic rats was improved by dietary myo-inositol supplementation or sorbinil administration. Although nonhypotensive doses of captopril lowered glomerular filtration rate (GFR) in diabetic rats on a 0.01% myo-inositol diet, GFR increased substantially after captopril infusion in diabetic rats treated with sorbinil or myo-inositol supplementation. These data suggest that normalization of tissue myo-inositol metabolism restores normal responsiveness to angiotensin II; this may contribute to the reduction in GFR with the two experimental maneuvers. We also tested the interaction between polyol-pathway activation and high dietary protein intake. Aldose reductase inhibition and dietary myo-inositol supplementation had no effect on the component of increased GFR due to 50% dietary protein intake but specifically inhibited the hyperfiltration attributable to diabetes. These results suggest that hyperglycemia acts through increased polyol-pathway activity and its effects on tissue myo-inositol metabolism to play a fundamental role in the pathogenesis of the glomerular hyperfiltration characteristic of early diabetes.

This content is only available via PDF.