Interactions of pancreatic islets and islet-associated mononuclear cells (IAMCs) from the nonobese diabetic (NOD) mouse were morphologically investigated. To obtain IAMCs, pancreatic islets isolated from adult NOD mice were cultured for 7 days with interleukin 2. Noted by light microscopy, interactions between IAMCs and freshly isolated islets from young NOD mice began 30 min after the initiation of the coculture, and 6 h later, normal cellular array of the islets was lost. By electron microscopy, most IAMCs had low nucleus-cytoplasm ratio, the nucleus was notched and exhibited condensed chromatin along the nuclear membrane, and well-developed Golgi complexes and several mitochondria were distributed in the cytoplasm. These IAMCs adhered to β-cells, but not to α- or δ-cells, with their pseudopods and caused cytolysis of β-cells. Immunohistochemical study with antibodies specific for pancreatic hormones demonstrated that only cells reacting with anti-insulin antibody were selectively lost as the incubation time proceeded. Electron immunohistochemistry by immunogold technique showed that effector cells in IAMCs reacted with anti-CD8 (Lyt-2) antibody, but not anti-CD4 (L3T4) or anti-asialogangliosideM1 antibody. In addition, the concentration of pancreatic hormones in the culture medium, used as a marker of cytolysis, also demonstrated that insulin was significantly increased after 6 h of culture, whereas glucagon and somatostatin were not. These results suggest that CD8+ cytotoxic T lymphocytes are involved in the selective destruction of pancreatic β-cells in the NOD mouse.

This content is only available via PDF.