Herein, we review the applicability to human β-cells of an electrophysiologically based hypothesis of the coupling of glucose metabolism to insulin secretion. According to this hypothesis, glucose metabolism leads to the generation of intracellular intermediates (including ATP), which leads to closure of ATP-sensitive K+ channels. Channel closure results in membrane depolarization, the onset of electrical activity, and voltage-dependent Ca2+ entry. The resultant rise in cytosolic Ca2+ leads to Ca2+-dependent exocytosis of insulin granules. We found that most of the published experimental evidence for human β-cells supports this hypothesis. In addition, we present three other emerging lines of evidence in support of this hypothesis for human islet β-cells: 1) the effects of pH1-altering maneuvers on insulin secretion and electrical activity; 2) preliminary identification of LVA and HVA single Ca2+ channel currents; and 3) validation of the feasibility of Cm measurements to track insulin granule exocytosis. On the basis of this last new line of evidence, we suggest that combinations of Cm measurements and electrical activity/membrane current measurements may help define the roles of diverse electrical activity patterns, displayed by human β-cells, in stimulus-induced insulin secretion.
Skip Nav Destination
Article navigation
Perspectives in Diabetes|
October 01 1992
Electrophysiology of Stimulus-Secretion Coupling in Human β-Cells
Stanley Misler;
Stanley Misler
Departments of Internal Medicine (Jewish Hospital) and Cell Biology/Physiology, Washington University Medical Center
St. Louis, Missouri
Search for other works by this author on:
David W Barnett;
David W Barnett
Departments of Internal Medicine (Jewish Hospital) and Cell Biology/Physiology, Washington University Medical Center
St. Louis, Missouri
Search for other works by this author on:
Kevin D Gillis;
Kevin D Gillis
Departments of Internal Medicine (Jewish Hospital) and Cell Biology/Physiology, Washington University Medical Center
St. Louis, Missouri
Search for other works by this author on:
David M Pressel
David M Pressel
Departments of Internal Medicine (Jewish Hospital) and Cell Biology/Physiology, Washington University Medical Center
St. Louis, Missouri
Search for other works by this author on:
Address correspondence and reprint requests to S. Misler, Renal Division, The Jewish Hospital of St. Louis, 216 S. Kingshighway, St. Louis, MO 63110.
Diabetes 1992;41(10):1221–1228
Article history
Received:
April 28 1992
Revision Received:
July 01 1992
Accepted:
July 01 1992
PubMed:
1397696
Citation
Stanley Misler, David W Barnett, Kevin D Gillis, David M Pressel; Electrophysiology of Stimulus-Secretion Coupling in Human β-Cells. Diabetes 1 October 1992; 41 (10): 1221–1228. https://doi.org/10.2337/diab.41.10.1221
Download citation file:
223
Views