This study investigated the effect of glucose on islet amyloid polypeptide secretion, content, and mRNA synthesis of human pancreatic islets. The release of islet amyloid polypeptide from fresh isolated islets in response to glucose was parallel to that of insulin. The islet amyloid polypeptide-to-insulin molar ratios in response to 5.5 and 16.7 mM glucose were 1:16 and 1:15 respectively. Islets were cultured for 1 and 7 days at two different glucose concentrations (5.5 and 16.7 mM). The islet amyloid polypeptide response to the 1-day culture was similar to that of the fresh islets; however, after the 7-day culture the islet amyloid polypeptide and insulin secretory responses to glucose were dissociated. The insulin response of islets to a high-glucose stimulus was significantly (P < 0.001) increased, whereas the islet amyloid polypeptide response of islets to the same stimulus was blunted. The IAPP content was > insulin content in a molar ratio (1:50 to 1:30) after long exposure of islets to concentrations of high glucose even though the increase was significant for both peptides (P < 0.005). Northern blot analysis of each cultured condition showed an increase of both mRNA IAPP and insulin signals after exposure of islets at 16.7 mM glucose, the maximum mRNA expression being after long exposure to high-glucose concentrations. Quantification of both signals by densitometry showed a greater increase for islet amyloid polypeptide than for insulin. These findings suggest that IAPP can be accumulated in beta-cells after long exposure of human islets to high-glucose concentrations, because glucose increases IAPP synthesis but not secretion. This may be important for understanding the factors involved in the amyloidogenicity of islet amyloid polypeptide and consequently in the pathogenesis of NIDDM.

This content is only available via PDF.