Insulin-dependent diabetes mellitus (IDDM), cardiovascular morbidity, and vital prognosis are linked to diabetic nephropathy, which is probably determined by renal hemodynamic abnormalities and by a genetic predisposition. Angiotensin I converting enzyme (ACE) regulates systemic and renal circulations through angiotensin II formation and kinins metabolism. Plasma and cellular ACE levels are genetically determined; an insertion/deletion polymorphism of the ACE gene is strongly associated with ACE levels, subjects homozygote for insertion (genotype II) having the lowest plasma values. We studied the relationship between the ACE gene polymorphism or plasma levels and microcirculatory disorders of IDDM through two independent studies: one involved 57 subjects with or without diabetic retinopathy, and the other compared 62 IDDM subjects with diabetic nephropathy to 62 diabetic control subjects with the same characteristics (including retinopathy severity) but with normal kidney function. The ACE genotype distribution was not different in diabetic subjects with or without retinopathy and in a healthy population. Conversely, an imbalance of ACE genotype distribution, with a low proportion of II subjects, was observed in IDDM subjects with diabetic nephropathy compared with their control subjects (P = 0.006). Plasma ACE levels were mildly elevated in all diabetic groups, independently of retinopathy, but they were higher in subjects with nephropathy than in those without nephropathy (P = 0.0022). The II genotype of ACE gene is a marker for reduced risk for diabetic nephropathy.

This content is only available via PDF.