Membrane glycoprotein PC-1, an inhibitor of insulin signaling, produces insulin resistance when overexpressed in cells transfected with PC-1 cDNA. In the present study, we determined whether PC-1 plays a role in the insulin resistance of skeletal muscle in obesity. Rectus abdominus muscle biopsies were taken from patients undergoing elective surgery. Subjects included both NIDDM patients (n = 14) and nondiabetic patients (n = 34) across a wide range of BMI values (19.5–90.1). Insulin-stimulated glucose transport was measured in incubated muscle strips, and PC-1 content, enzymatic activity, and insulin receptor content were measured in solubilized muscle extracts. Increasing BMI correlated with both an increase in the content of PC-1 in muscle (r = 0.55, P < 0.001) and a decrease in insulin stimulation of muscle glucose transport (r = −0.58, P = 0.008). NIDDM had no effect on either PC-1 content or glucose transport for any given level of obesity. Insulin stimulation of muscle glucose transport was negatively related to muscle PC-1 content (r = −0.68, P = 0.001) and positively related to insulin receptor content (r = 0.60, P = 0.005). Multivariate analysis indicated that both skeletal muscle PC-1 content and insulin receptor content, but not BMI, were independent predictors of insulin-stimulated glucose transport. Muscle PC-1 content accounted for 42% and insulin receptor content for 17% of the variance in glucose transport values. These studies raise the possibility that increased expression of PC-1 and a decreased insulin receptor content in skeletal muscle may be involved in the insulin resistance of obesity.

This content is only available via PDF.