Antioxidant enzyme expression was determined in rat pancreatic islets and RINm5F insulin-producing cells on the level of mRNA, protein, and enzyme activity in comparison with 11 other rat tissues. Although superoxide dismutase expression was in the range of 30% of the liver values, the expression of the hydrogen peroxide-inactivating enzymes catalase and glutathione per-oxidase was extremely low, in the range of 5% of the liver. Pancreatic islets but not RINm5F cells expressed an additional phospholipid hydroperoxide glutathione peroxidase that exerted protective effects against lipid peroxidation of the plasma membrane. Regression analysis for mRNA and protein expression and enzyme activities from 12 rat tissues revealed that the mRNA levels determine the enzyme activities of the tissues. The induction of cellular stress by high glucose, high oxygen, and heat shock treatment did not affect antioxidant enzyme expression in rat pancreatic islets or in RINm5F cells. Thus insulin-producing cells cannot adapt the low antioxidant enzyme activity levels to typical situations of cellular stress by an upregulation of gene expression. Through stable transfection, however, we were able to increase catalase and glutathione peroxidase gene expression in RINm5F cells, resulting in enzyme activities more than 100-fold higher than in nontransfected controls. Catalase-transfected RINm5F cells showed a 10-fold greater resistance toward hydrogen peroxide toxicity, whereas glutathione peroxidase overexpression was much less effective. Thus inactiva-tion of hydrogen peroxide through catalase seems to be a step of critical importance for the removal of reactive oxygen species in insulin-producing cells. Overexpression of catalase may therefore be an effective means of preventing the toxic action of reactive oxygen species.
Skip Nav Destination
Article navigation
Original Articles|
November 01 1997
Relation Between Antioxidant Enzyme Gene Expression and Antioxidative Defense Status of Insulin-Producing Cells
Markus Tiedge;
Markus Tiedge
Institute of Clinical Biochemistry, Hanover Medical School
Hanover, Germany
Search for other works by this author on:
Stephan Lortz;
Stephan Lortz
Institute of Clinical Biochemistry, Hanover Medical School
Hanover, Germany
Search for other works by this author on:
Jens Drinkgern;
Jens Drinkgern
Institute of Clinical Biochemistry, Hanover Medical School
Hanover, Germany
Search for other works by this author on:
Sigurd Lenzen
Sigurd Lenzen
Institute of Clinical Biochemistry, Hanover Medical School
Hanover, Germany
Search for other works by this author on:
Address correspondence and reprint requests to Dr. S. Lenzen, Institute of Clinical Biochemistry, Hanover Medical School, D-30623 Hanover, Germany.
Diabetes 1997;46(11):1733–1742
Article history
Received:
February 26 1997
Revision Received:
June 18 1997
Accepted:
June 18 1997
PubMed:
9356019
Citation
Markus Tiedge, Stephan Lortz, Jens Drinkgern, Sigurd Lenzen; Relation Between Antioxidant Enzyme Gene Expression and Antioxidative Defense Status of Insulin-Producing Cells. Diabetes 1 November 1997; 46 (11): 1733–1742. https://doi.org/10.2337/diab.46.11.1733
Download citation file:
610
Views