Circulating soluble E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular adhesion molecule-1 (VCAM-1) concentrations were evaluated in 93 nonobese essential hypertensive patients, of whom 16 had impaired glucose tolerance and hyperlipidemia (group I); 25 had impaired glucose tolerance (group II); 28 had hyperlipidemia (group III); and 24 had no metabolic abnormalities (group IV). A group of 22 healthy volunteers served as a control group. All groups were without clinical or ultrasound evidence of vascular lesion and were matched for age, sex, and BMI. Endothelial soluble adhesion molecules were measured at baseline, during an oral glucose tolerance test, and after 12 weeks of either enalapril or placebo treatments. Plasma soluble E-selectin, ICAM-1, and VCAM-1 were higher (P < 0.05) in group I and II than in the other groups (group I: E-selectin, 96.1+/-27.1; ICAM-1, 304.0+/-102.1; VCAM-1, 626.1+/-156.2 microg/l. Group II: E-selectin, 88.0+/-18.0; ICAM-1, 268.0+/-84.1; VCAM-1, 594.1+/-140.9 microg/I. Group III: E-selectin, 70.1+/-18.1; ICAM-1, 195.1+/-68.0; VCAM-1, 495.9+/-110.1 microg/l. Group IV: E-selectin, 65.1+/-16.1; ICAM-1, 168.1+/-64.0; VCAM-1, 472.1+/-108.2 microg/l). Soluble adhesins levels were not higher than normal in groups III and IV. Plasma soluble ICAM-1 concentrations increased in group I after glucose administration and were directly correlated with 2-h insulin levels (r=0.648, P=0.007). Compared with placebo, 12 weeks of enalapril treatment significantly (P < 0.0001) reduced soluble E-selectin, ICAM-1, and VCAM-1. Decrements of soluble adhesins were not dependent on enalapril-related blood pressure changes. Therefore, an early endothelial activation was present in essential hypertensive patients with impaired glucose tolerance, regardless of the presence of hyperlipidemia. ACE inhibition counteracted such endothelial activation.

This content is only available via PDF.