Within pancreatic islet cells, rhythmic changes in the cytosolic Ca2+ concentration have been reported to occur in response to stimulatory glucose concentrations and to be synchronous with pulsatile release of insulin. We explored the possible mechanisms responsible for Ca2+ signal propagation within islet cells, with particular regard to gap junction communication, the pathway widely credited with being responsible for coordination of the secretory activity. Using fura-2 imaging, we found that multiple mechanisms control Ca2+ signaling in pancreatic islet cells. Gap junction blockade by 18 alpha-glycyrrhetinic acid greatly restricted the propagation of Ca2+ waves induced by mechanical stimulation of cells but affected neither Ca2+ signals nor insulin secretion elicited by glucose elevation. The source of Ca2+ elevation was also different under the two experimental conditions, the first being sustained by release from inner stores and the second by nifedipine-sensitive Ca2+ influx. Furthermore, glucose-induced Ca2+ waves were able to propagate across cell-free clefts, indicating that diffusible factors can control Ca2+ signal coordination. Our results provide evidence that multiple mechanisms of Ca2+ signaling operate in beta-cells and that gap junctions are not required for intercellular Ca2+ wave propagation or insulin secretion in response to glucose.
Skip Nav Destination
Article navigation
Abstract|
October 01 1999
Mechanisms of coordination of Ca2+ signals in pancreatic islet cells.
F Bertuzzi;
F Bertuzzi
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
A M Davalli;
A M Davalli
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
R Nano;
R Nano
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
C Socci;
C Socci
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
F Codazzi;
F Codazzi
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
R Fesce;
R Fesce
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
V Di Carlo;
V Di Carlo
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
G Pozza;
G Pozza
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
F Grohovaz
F Grohovaz
Surgical Department, and Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology Center, S. Raffaele Scientific Institute, Milan, Italy. bertuzzi.federico@hsr.it
Search for other works by this author on:
Citation
F Bertuzzi, A M Davalli, R Nano, C Socci, F Codazzi, R Fesce, V Di Carlo, G Pozza, F Grohovaz; Mechanisms of coordination of Ca2+ signals in pancreatic islet cells.. Diabetes 1 October 1999; 48 (10): 1971–1978. https://doi.org/10.2337/diabetes.48.10.1971
Download citation file: