Formation of advanced glycation end products (AGEs) is accelerated in diabetic subjects along with hyperglycemia. Although several lines of evidence indicate that AGEs stimulate macrophages to secrete several cytokines and growth factors, little is known about the effect of AGEs on the primary function of macrophages, such as phagocytosis. On the other hand, impairment of the phagocytic function of monocytes/macrophages is suggested to contribute to the low resistance to infection in diabetic subjects. In the present study, we examined the effect of AGEs on the phagocytic function of macrophages. Using flow cytometric analysis of mouse resident peritoneal macrophages, we showed that AGEs suppress phagocytosis of fluorescent microspheres by cultured macrophages. In addition, experiments using streptozotocin-induced diabetic mice demonstrated a significant decrease in the phagocytic activity of resident peritoneal macrophages 12 weeks after induction of diabetes compared with age-matched control mice. The phagocytic activity of peritoneal macrophages correlated inversely with AGE content in the adjacent peritoneal tissue. Furthermore, reduced phagocytic activity of macrophages was associated with a reduction in intracellular ATP content. Because phagocytosis is an important component of the defense system, suppression of such activity by AGEs may explain, at least in part, the increased susceptibility of diabetic patients to infection.
Skip Nav Destination
Article navigation
Abstract|
October 01 1999
Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products.
B F Liu;
B F Liu
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
S Miyata;
S Miyata
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
H Kojima;
H Kojima
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
A Uriuhara;
A Uriuhara
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
H Kusunoki;
H Kusunoki
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
K Suzuki;
K Suzuki
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
M Kasuga
M Kasuga
Second Department of Internal Medicine, Kobe University School of Medicine, Japan.
Search for other works by this author on:
Citation
B F Liu, S Miyata, H Kojima, A Uriuhara, H Kusunoki, K Suzuki, M Kasuga; Low phagocytic activity of resident peritoneal macrophages in diabetic mice: relevance to the formation of advanced glycation end products.. Diabetes 1 October 1999; 48 (10): 2074–2082. https://doi.org/10.2337/diabetes.48.10.2074
Download citation file: