It is assumed that increased oxidative stress contributes to the development of complications in diabetes. In this study, several markers of protein structural modifications directly induced by free radicals were investigated in the liver and kidney cytosolic fractions of rats with streptozotocin-induced diabetes. Sulfydryl residue and side-chain amino group analyses, as well as immunoblotting and chromatographic measurements of protein-bound carbonyl, suggest that protein oxidative modification is not increased by diabetes, with the exception of sulfydryl groups in renal cytosol. The levels of the glycation-derived carbonyl N epsilon-fructosyl-lysine are significantly increased by diabetes. Furthermore, unchanged proteolytic activity against in vivo-oxidized proteins, significant decreases both in activity against H2O2-modified proteins and in proteasome activity, measured by the degradation of a specific fluorogenic substrate, suggest that the unchanged oxidative protein modification in the diabetic state cannot be attributed to an increased cytosolic proteolytic activity in these tissues. These results provide evidence against a generalized increase in protein oxidative damage and demonstrate a diabetes-induced alteration in cytosolic proteolytic pathways, suggesting that proteasome activity may be impaired in these organs.
Skip Nav Destination
Article navigation
Abstract|
November 01 1999
Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney.
M Portero-Otín;
M Portero-Otín
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
R Pamplona;
R Pamplona
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
M C Ruiz;
M C Ruiz
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
E Cabiscol;
E Cabiscol
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
J Prat;
J Prat
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
M J Bellmunt
M J Bellmunt
Department of Basic Medical Sciences, School of Medicine, University of Lleida, Spain. [email protected]
Search for other works by this author on:
Citation
M Portero-Otín, R Pamplona, M C Ruiz, E Cabiscol, J Prat, M J Bellmunt; Diabetes induces an impairment in the proteolytic activity against oxidized proteins and a heterogeneous effect in nonenzymatic protein modifications in the cytosol of rat liver and kidney.. Diabetes 1 November 1999; 48 (11): 2215–2220. https://doi.org/10.2337/diabetes.48.11.2215
Download citation file: