Hybrid receptors composed of an insulin alphabeta-hemireceptor and a type 1 IGF alphabeta-hemireceptor are formed in tissues expressing both molecules. We recently reported an increased hybrid receptor expression in skeletal muscle of type 2 diabetic patients that is inversely correlated with in vivo insulin sensitivity. It is unclear whether these changes were due to primary abnormalities or to secondary derangements acting in vivo, such as hyperglycemia. To address this, we determined abundance of hybrids in skeletal muscle from three groups of rats: controls, diabetic (90% pancreatectomy), and diabetic treated with phlorizin to normalize plasma glucose levels. We found that the abundance of hybrid receptors was higher in diabetic rats compared with control and phlorizin-treated diabetic rats (percentage of 125I-insulin bound versus total added radioactivity [B/T] = 1.8+/-0.11, 0.4+/-0.01, and 0.32+/-0.04, respectively; P < 0.0001). Fasting plasma glucose levels were positively correlated with hybrids abundance (r = 0.77, P < 0.002). Hybrid receptor protein content, assessed by immunoblotting, was 2.4-fold higher in diabetic rats as compared with control and phlorizin-treated diabetic rats. Because it has been shown that some of the regulatory effects of glucose may be mediated by the glucosamine pathway, we subsequently determined the effect of an in vivo glucosamine infusion on hybrid receptor formation. We found that abundance of hybrids was significantly higher in muscle from glucosamine-treated rats compared with control rats (B/T = 0.17+/-0.02 and 0.11+/-0.01, respectively; P < 0.009). Quantitation of hybrid content by immunoblotting revealed that their abundance was 1.9-fold higher in glucosamine-treated rats. The results demonstrate that 1) elevated glucose levels in diabetic rats are associated with increased expression of hybrid receptors in muscle, 2) correction of hyperglycemia with phlorizin completely reverses increased expression of hybrids, and 3) glucosamine infused into control rats mimics the effects of hyperglycemia on hybrid receptor formation. Thus, the results support the hypothesis that glucose acting, at least in part, through the glucosamine pathway may play an important role in regulating hybrid receptor assembly in vivo.
Skip Nav Destination
Article navigation
Abstract|
December 01 1999
Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly.
M Federici;
M Federici
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
A Giaccari;
A Giaccari
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
M L Hribal;
M L Hribal
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
B Giovannone;
B Giovannone
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
D Lauro;
D Lauro
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
L Morviducci;
L Morviducci
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
L Pastore;
L Pastore
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
G Tamburrano;
G Tamburrano
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
R Lauro;
R Lauro
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
G Sesti
G Sesti
Department of Internal Medicine, University of Rome, Tor Vergata, Italy.
Search for other works by this author on:
Citation
M Federici, A Giaccari, M L Hribal, B Giovannone, D Lauro, L Morviducci, L Pastore, G Tamburrano, R Lauro, G Sesti; Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly.. Diabetes 1 December 1999; 48 (12): 2277–2285. https://doi.org/10.2337/diabetes.48.12.2277
Download citation file: