Diabetic rats have a deficiency in their heart ATP concentrations, and although the mechanism remains to be elucidated, this deficiency may involve increased uncoupling of oxidative phosphorylation. To investigate whether heart uncoupling proteins (UCPs) are subject to transcriptional regulation in diabetes, we examined changes in UCP mRNA expression in the heart of streptozotocin-induced diabetic (STZ-DM) rats. Heart UCP3 mRNA expression significantly increased by 9.4-fold in STZ-DM rats, while levels of UCP2 mRNA expression were not significantly altered. Insulin supplementation in STZ-DM rats returned UCP3 mRNA concentrations to control levels. The expression of UCP3 mRNA was similarly elevated in the heart of fasted rats, which also have hypoinsulinemia and hyper-free fatty acidemia but, unlike the STZ-DM rats, are hypoglycemic. Since hyperinsulinemia alone was previously reported to not affect UCP3 gene expression in the muscle, these results indicate that hyper-free fatty acidemia is a potent enhancer of UCP3 gene expression in the diabetic rat heart. Interestingly, we found no changes in UCP3 mRNA levels in Zucker fatty (fa/fa) rats with excessive chronic hyper-free fatty acidemia, which suggests that upregulation of heart UCP3 mRNA may depend on an acute change in free fatty acid concentrations rather than on their sustained elevation. High-energy ATP deficiencies in the diabetic rat heart may primarily result from proton leakage due to the upregulation of UCP3 expression.

This content is only available via PDF.