Modulation of lipoprotein lipase (LPL) allows a tissue-specific partitioning of triglyceride-derived fatty acids, and insulin is a major modulator of its activity. The present studies were aimed to assess in rats the contribution of insulin to the response of adipose tissue and muscle LPL to food intake. Epididymal and retroperitoneal adipose LPL rose 65% above fasting values as early as 1 h after the onset of a 30-min high-carbohydrate meal, with a second activity peak 1 h later that was maintained for an additional 2 h. Soleus muscle LPL was decreased by 25% between 0.5 and 4 h after meal intake. The essential contribution of insulin to the LPL response to food intake was determined by preventing the full insulin response to meal intake by administration of diazoxide (150 mg/kg body wt, in the meal). The usual postprandial changes in adipose and muscle LPL did not occur in the absence of an increase in insulinemia. However, the early (60 min) increase in adipose tissue LPL was not prevented by the drug, likely because of the maintenance of the early centrally mediated phase of insulin secretion. In a subsequent study, rats chronically implanted with a gastric cannula were used to demonstrate that the postprandial rise in adipose LPL is independent of nutrient absorption and can be elicited by the cephalic (preabsorptive) phase of insulin secretion. Obese Zucker rats were used because of their strong cephalic insulin response. After an 8-h fast, rats were fed a liquid diet ad libitum (orally, cannula closed), sham fed (orally, cannula opened), or fed directly into the stomach via the cannula during 4 h. Insulinemia increased 10-fold over fasting levels in ad libitum- and intragastric-fed rats and threefold in sham-fed rats. Changes in adipose tissue LPL were proportional to the elevation in plasma insulin levels, demonstrating that the cephalic-mediated rise in insulinemia, in the absence of nutrient absorption, stimulates adipose LPL. These results demonstrate the central role of insulin in the postprandial response of tissue LPL, and they show that cephalically mediated insulin secretion is able to stimulate adipose LPL.

This content is only available via PDF.