Extracellular factors that regulate the growth and differentiation of cell lineages in the pancreatic primordia are poorly understood. Identification of these factors for pancreatic islet beta-cells could open new avenues for the treatment of insulin-dependent diabetes. We developed a low cell density serum-free culture system for dissociated pancreatic cells from the 13.5-day mouse fetus and investigated the effects of extracellular matrix proteins on differentiation of islet cells. After 4 days in culture, total cell number decreased by two-thirds, but insulin-positive beta-cell number increased 10-fold. Both of collagens I and IV inhibited cell survival (by >50%), whereas fibronectin had no effect. In the presence of soluble laminin-1, however, the number of beta-cells increased linearly by 60-fold without an increase in the total cell number; glucagon-positive cell number was unchanged, and somatostatin and pancreatic polypeptide-positive cells were not detected. The effect of laminin-1 was completely blocked by a monoclonal rat anti-laminin-1 antibody. In the presence of laminin-1, the thymidine analogue, BrdU, was incorporated into only 2.5% of cells, which were mainly insulin-negative at days 1-3. Laminin-1 appeared, therefore, to induce differentiation of beta-cells from precursor cells in day-13.5 fetal pancreas. Laminin-1 was shown to be expressed in the epithelial basement membrane of the 13.5- to 17.5-day fetal pancreas. These findings provide the first evidence of a role for laminin-1 to promote differentiation of pancreatic beta-cells.

This content is only available via PDF.