Exendin-4 is a 39 amino acid peptide isolated from the salivary secretions of the Gila monster (Heloderma suspectum). It shows 53% sequence similarity to glucagon-like peptide (GLP)-1. Unlike GLP-1, exendin-4 has a prolonged glucose-lowering action in vivo. We compared the potency and duration of glucose-lowering effects of exendin-4 and GLP-1 in hyperglycemic db/db and ob/ob mice. Whereas reductions in plasma glucose of up to 35% vanished within 1 h with most doses of GLP-1, the same doses of exendin-4 resulted in a similar glucose-lowering effect that persisted for >4 h. Exendin-4 was 5,530-fold more potent than GLP-1 in db/db mice (effective doses, 50% [ED50s] of 0.059 microg/kg +/-0.15 log and 329 microg/kg+/-0.22 log, respectively) and was 5,480-fold more potent in ob/ob mice (ED50s of 0.136 microg/kg+/-0.10 log and 744 microg/kg+/-0.21 log, respectively) when the percentage fall in plasma glucose at 1 h was used as the indicator response. Exendin-4 dose-dependently accelerated glucose lowering in diabetic rhesus monkeys by up to 37% with an ED50 of 0.25 microg/kg +/-0.09 log. In two experiments in which diabetic fatty Zucker rats were injected subcutaneously twice daily for 5-6 weeks with doses of exendin-4 up to 100 microg x rat(-1) x day(-1) (approximately 250 microg/kg), HbA1c was reduced relative to saline-injected control rats. Exendin-4 treatment was also associated in each of these experiments with weight loss and improved insulin sensitivity, as demonstrated by increases of up to 32 and 49%, respectively, in the glucose infusion rate (GIR) in the hyperinsulinemic euglycemic clamp. ED50s for weight loss and the increase in clamp GIR were 1.0 microg/kg+/-0.15 log and 2.4 microg/kg+/-0.41 log, respectively. In conclusion, acute and chronic administration of exendin-4 has demonstrated an antidiabetic effect in several animal models of type 2 diabetes.

This content is only available via PDF.