The beta-cells in the pancreatic islets of Langerhans are the targets of autoreactive T-cells and are destroyed in type 1 diabetes. Macrophage-derived interleukin-1beta (IL-1beta) is important in eliciting beta-cell dysfunction and initiating beta-cell damage in response to microenvironmental changes within islets. In particular, IL-1beta can impair glucose-stimulated insulin production in beta-cells in vitro and can sensitize them to Fas (CD95)/FasL-triggered apoptosis. In this report, we have examined the ability to block the detrimental effects of IL-1beta by genetically modifying islets by adenoviral gene transfer to express the IL-1 receptor antagonist protein. We demonstrate that adenoviral gene delivery of the cDNA encoding the interleukin-1 receptor antagonist protein (IL-1Ra) to cultured islets results in protection of human islets in vitro against IL-1beta-induced nitric oxide formation, impairment in glucose-stimulated insulin production, and Fas-triggered apoptosis activation. Our results further support the hypothesis that IL-1beta antagonism in in situ may prevent intra-islet proinsulitic inflammatory events and may allow for an in vivo gene therapy strategy to prevent insulitis and the consequent pathogenesis of diabetes.
Skip Nav Destination
Article navigation
Abstract|
September 01 1999
Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro.
N Giannoukakis;
N Giannoukakis
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
W A Rudert;
W A Rudert
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
S C Ghivizzani;
S C Ghivizzani
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
A Gambotto;
A Gambotto
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
C Ricordi;
C Ricordi
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
M Trucco;
M Trucco
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
P D Robbins
P D Robbins
Department of Molecular Genetics and Biochemistry, Children's Hospital, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA.
Search for other works by this author on:
Citation
N Giannoukakis, W A Rudert, S C Ghivizzani, A Gambotto, C Ricordi, M Trucco, P D Robbins; Adenoviral gene transfer of the interleukin-1 receptor antagonist protein to human islets prevents IL-1beta-induced beta-cell impairment and activation of islet cell apoptosis in vitro.. Diabetes 1 September 1999; 48 (9): 1730–1736. https://doi.org/10.2337/diabetes.48.9.1730
Download citation file: