The aim of this study is to investigate the mechanism behind the slow increase in fat oxidation on a high-fat diet. Therefore, we determined 24-h substrate oxidation using respiration chambers and the rate of appearance and oxidation of plasma-derived fatty acids in seven healthy nonobese men (age 23 +/- 2 years, height 1.85 +/- 0.03 m, weight 70.4 +/- 2.3 kg, % body fat 13 +/- 1). Before testing, they consumed a low-fat diet (30% fat, 55% carbohydrate) at home for 3 days. Measurements were performed after 1 day consumption of either a low-fat diet (LF), a high-fat diet (HF1, 60% fat, 25% carbohydrate), or a high-fat diet preceded by a glycogen-lowering exercise test (HF1+EX), and after 7 days on a high-fat diet (HF7). After an overnight fast, an infusion of [U-13C]palmitate (0.00806 micromol x min(-1) x kg(-1)) was started and continued for 2 h at rest followed by 1 h of exercise at 50% of maximal power output (Wmax). Whole-body fat oxidation was measured using indirect calorimetry, and plasma-derived fatty acid oxidation was evaluated by measuring breath 13CO2 enrichment and corrected with the acetate recovery factor. Twenty-four-hour fat oxidation gradually increased on the high-fat diet. Both at rest and during exercise, there was no change in rate of appearance of fatty acids and plasma-derived fatty acid oxidation. Triglyceride-derived fatty acid oxidation tended to be higher after 7 days of high-fat diet at rest (P < 0.07). This difference was significant during exercise (P < 0.05). In conclusion, the results from this study suggest that triglyceride-derived fatty acid oxidation (VLDL or intramuscular triglycerides) plays a role in the increase in fat oxidation on a high-fat diet, but plasma-derived fatty acids remain the major source for fat oxidation.
Skip Nav Destination
Article navigation
Abstract|
April 01 2000
Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation.
P Schrauwen;
P Schrauwen
Department of Human Biology, Maastricht University, The Netherlands. p.schrauwen@hb.unimaas.nl
Search for other works by this author on:
A J Wagenmakers;
A J Wagenmakers
Department of Human Biology, Maastricht University, The Netherlands. p.schrauwen@hb.unimaas.nl
Search for other works by this author on:
W D van Marken Lichtenbelt;
W D van Marken Lichtenbelt
Department of Human Biology, Maastricht University, The Netherlands. p.schrauwen@hb.unimaas.nl
Search for other works by this author on:
W H Saris;
W H Saris
Department of Human Biology, Maastricht University, The Netherlands. p.schrauwen@hb.unimaas.nl
Search for other works by this author on:
K R Westerterp
K R Westerterp
Department of Human Biology, Maastricht University, The Netherlands. p.schrauwen@hb.unimaas.nl
Search for other works by this author on:
Citation
P Schrauwen, A J Wagenmakers, W D van Marken Lichtenbelt, W H Saris, K R Westerterp; Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation.. Diabetes 1 April 2000; 49 (4): 640–646. https://doi.org/10.2337/diabetes.49.4.640
Download citation file: