Diabetes and atherosclerosis have been proposed to be influenced by immune and autoimmune mechanisms. A common incriminated antigen in both disorders is the heat shock protein (HSP)-60/65. In the current study, we established a model combining hyperglycemia with hyperlipidemia in LDL receptor-deficient (LDL-RD) mice and assessed its possible influences on lipid profile, HSP60/65, and atherogenesis. LDL-RD mice were injected either with streptozotocin to induce hyperglycemia or with citrate buffer (control). When hyperglycemia was induced, both study groups were challenged with a high-fat (Western) diet for 6 weeks. Plasma fasting glucose, lipid profile, and antibody levels to HSP65 and oxidized LDL were assessed. At death, the spleens from both groups were evaluated for their proliferative response to HSP65 and the consequent cytokine production. The extent of atherosclerosis was assessed at the aortic sinus. Plasma glucose, cholesterol, and triglyceride levels were elevated in mice injected with streptozotocin compared with control mice. Atherosclerotic lesions were significantly larger in the streptozotocin-injected hyperglycemic LDL-RD mice (132 +/- 23 x 10(5) microm2) in comparison to their normoglycemic litter-mates (20 +/- 6.6 x 10(5) microm2; P < 0.0001). Both humoral and cellular immune response to HSP65 was more pronounced in streptozotocin-injected mice. When challenged with HSP65 in vitro, splenocytes from streptozotocin-injected mice favored the production of the T-helper (TH)-1 cytokine gamma-interferon. In conclusion, we have established a mouse model that combines hyperglycemia with diet-induced hyperlipidemia in LDL-RD mice and studied its effect on atherosclerosis progression. The accelerated atherosclerotic process is associated with heightened immune response to HSP65 and a shift to a TH1 cytokine profile.
Skip Nav Destination
Article navigation
Abstract|
June 01 2000
Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity.
P Keren;
P Keren
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
J George;
J George
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
A Shaish;
A Shaish
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
H Levkovitz;
H Levkovitz
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
Z Janakovic;
Z Janakovic
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
A Afek;
A Afek
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
I Goldberg;
I Goldberg
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
J Kopolovic;
J Kopolovic
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
G Keren;
G Keren
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
D Harats
D Harats
Institute of Lipid and Atherosclerosis Research, Sheba Medical Center, Tel-Hashomer, Israel.
Search for other works by this author on:
Citation
P Keren, J George, A Shaish, H Levkovitz, Z Janakovic, A Afek, I Goldberg, J Kopolovic, G Keren, D Harats; Effect of hyperglycemia and hyperlipidemia on atherosclerosis in LDL receptor-deficient mice: establishment of a combined model and association with heat shock protein 65 immunity.. Diabetes 1 June 2000; 49 (6): 1064–1069. https://doi.org/10.2337/diabetes.49.6.1064
Download citation file: