Insulin is released in high-frequency pulsatile bursts at intervals of 6-13 min. Intrapancreatic mechanisms are assumed to coordinate pulsatile insulin release, but small oscillations in plasma glucose concentrations may contribute further. To gain additional insight into beta-cell (patho)physiology, we explored the ability of repetitive small glucose infusions (6 mg/kg over 1 min every 10 min) to modify rapid pulsatile insulin secretion in 10 type 2 diabetic individuals (plasma glucose 9.3 +/- 1.0 mmol/l, HbA1c 7.9 +/- 0.5%, mean +/- SE) and 10 healthy subjects. All subjects were investigated twice in randomly assigned order: during saline and during glucose exposure. Blood was collected every minute for 90 min to create a plasma insulin concentration time-series for analysis using 3 complementary algorithms: namely, spectral analysis, autocorrelation analysis, and approximate entropy (ApEn). During saline infusion, none of the algorithms were able to discriminate between diabetic and control subjects (P > 0.20). During glucose entrainment, spectral density peaks (SP) and autocorrelation coefficients (AC) increased significantly (P < 0.001), and ApEn decreased (P < 0.01), indicating more regular insulin time-series in the healthy volunteers. However, no differences were observed in the diabetic individuals between the glucose and saline conditions. Furthermore, in spite of identical absolute glucose excursions (approximately 0.3 mmol/l) glucose pulse entrainment led to a complete (SP: 4.76 +/- 0.62 [range 2.08-7.60] vs. 17.24 +/- 0.93 [11.70-20.58], P < 0.001; AC: 0.01 +/- 0.05 [0.33-0.24] vs. 0.64 +/- 0.05 [0.35-0.83], P < 0.001) or almost complete (ApEn: 1.59 +/- 0.02 [1.48-1.67] vs. 1.42 +/- 0.05 [1.26-1.74], P < 0.005) separation of the insulin time-series in diabetic and control subjects. Even elevating the glucose infusion rate in the diabetic subjects to achieve comparable relative (and hence higher absolute) glucose excursions (approximately 4.9%) failed to entrain pulsatile insulin secretion in this group. In conclusion, the present study demonstrates that failure to respond adequately with regular oscillatory insulin secretion to recurrent high-frequency and (near)-physiological glucose excursion is a manifest feature of beta-cell malfunction in type 2 diabetes. Whether the model will be useful in unmasking subtle (possible prediabetic) defects in beta-cell sensitivity to glucose drive remains to be determined.

This content is only available via PDF.