To assess the effect of Asian-specific HLA haplotypes on susceptibility to type 1 diabetes, we investigated the association of genotypic combinations of DRB1-DQB1 haplotypes with susceptibility to type 1 diabetes. We studied 132 Japanese patients with type 1 diabetes and 157 control subjects, along with 67 Korean patients and 109 control subjects. DRB1*0405-DQB1*0401 and DRB1*0901-DQB1*0303 were confirmed to be two major susceptible HLA haplotypes in the Japanese population. The frequencies of heterozygotes and homozygotes with DRB1*0405-DQB1*0401 were similarly higher in patients than in control subjects (homozygotes, 5.3% vs. 3.8%; heterozygotes, 48.5% vs. 26.1%). In contrast, homozygotes, but not heterozygotes, with DRB1*0901-DQB1*0303 were more frequent in patients with type 1 diabetes than in control subjects (homozygotes, 12.9% vs. 0.6%; heterozygotes, 22.0% vs. 24.8%). A similar tendency was also observed in the Korean population. In multiple logistic regression analysis, DRB1*0405-DQB1*0401 fitted a dominant model and DRB1*0901-DQB1*0303 fitted a recessive model. These data, which indicate that the contribution of HLA haplotypes to the genetic susceptibility to type 1 diabetes differs depending on the genotypic combination of HLA haplotypes, suggest the importance of extensive analysis of genotypes in studies on HLA and disease association in general.

Type 1 (insulin-dependent) diabetes is caused by autoimmune destruction of insulin-producing β-cells of the pancreas (13). Susceptibility to type 1 diabetes is determined by a combination of genetic and environmental factors. In both animal models and humans, type 1 diabetes is a polygenic trait, with a major locus encoded by the major histocompatibility complex (MHC) and several other loci contributing to disease susceptibility (48). In humans, the contribution of HLA to the genetic risk of type 1 diabetes is estimated as ∼50% (5). The role of HLA in type 1 diabetes was first indicated by the association with HLA-B8 and -B15, and then with the HLA-DR3 and -DR4 antigens encoded at the DRB1 locus (913). Subsequently, the DQB1 and DQA1 genes were shown to be more strongly associated with type 1 diabetes (1422), and the DQ molecule was favored as the primary susceptibility factor. Although several studies have clearly demonstrated that both DQ and DR influence type 1 diabetes susceptibility (2328), the interpretation of the complex HLA associations with type 1 diabetes is still under extensive discussion.

Population studies have shown that HLA associations may vary depending on geographic and ethnic origin (29). In Caucasian populations, predisposition to type 1 diabetes is mostly associated with the DRB1*03-DQB1*0201 and/or DRB1*04-DQB1*0302 haplotypes, whereas the DRB1*15-DQB1*0602 haplotype confers strong protection against the disease. In the Japanese population, where the prevalence of type 1 diabetes is less than one-tenth that in most Caucasian populations, the DRB1*03-DQB1*0201 haplotype is absent, and DRB1*04-DQB1*0302 is not associated with type 1 diabetes (30). Instead, three haplotypes, DRB1*0405-DQB1*0401, DRB1*0802-DQB1*0302, and DRB1*0901-DQB1*0303, which are rare in Caucasian populations, confer susceptibility to type 1 diabetes (3032). Moreover, the DRB1*1502-DQB1*0601 haplotype, which is rare in Caucasian populations, is a major protective haplotype, in addition to DRB1*1501*0602, a well-known protective haplotype in almost all ethnic groups (3032).

DRB1*03-DQB1*0201 and DRB1*04-DQB1*0302 haplotypes in Caucasians, in particular in a heterozygous state, are so strong that the contribution of other haplotypes to type 1 diabetes susceptibility is easily masked, making it difficult to assess the effect of other haplotypes on disease susceptibility. In contrast, the absence of highly susceptible haplotypes, DRB1*03-DQB1*0201 and DRB1*04-DQB1*0302, in Japanese, together with the presence of Asian-specific haplotypes, is expected to make it easier in the Japanese than in the Caucasian population to clarify the contribution of genotypic combinations and the dose effect of moderately susceptible HLA haplotypes to susceptibility to type 1 diabetes. We therefore studied the association of HLA haplotypes with type 1 diabetes in Japanese, with special reference to the genotypic combination of haplotypes, in either heterozygotes or homozygotes, in search for the effect of specific genotypes on disease susceptibility.

Subjects.

We studied 132 unrelated Japanese patients (male, 54; female, 78) with type 1 diabetes and 157 unrelated healthy control subjects (male, 89; female, 68). Mean (± SD) age at onset of the disease was 16.1 ± 12.4 years (range, 2–59). The diagnosis of type 1 diabetes was defined by both clinical features and laboratory data. All the patients were ketosis-prone, lacked endogenous insulin secretion as judged by urinary C-peptide levels of <3.3 nmol/day, and needed more than four insulin injections per day. Control subjects consisted of medical staff in our department. They had normal glucose tolerance and no family history of type 1 diabetes or other autoimmune diseases. The age of the control subjects was 42.0 ± 10.9 years. All patients and control subjects were of Japanese origin and resided in the Osaka area (western Japan). Informed consent was obtained from all subjects.

Genomic DNA samples of 67 Korean patients (male, 20; female, 47) with type 1 diabetes and 109 unrelated healthy control subjects (male, 68; female, 41) were obtained courtesy of Dr. Inkyuu Lee. The age at onset of the disease was 11.9 ± 7.2 years (range, 1–32). The criteria for the diagnosis of type 1 diabetes were the same as those of our laboratory. All patients and control subjects were of Korean origin and resided in the Taegu area, located in southeast Korea.

Typing of HLA-DR and -DQ.

HLA-DRB1 and -DQB1 alleles were determined by PCR-restriction fragment length polymorphism methods as reported previously (3336). The most probable HLA-DR and -DQ haplotypes were deduced from known linkage disequilibria (37).

Statistical analysis.

Allele frequencies were estimated by direct counting. The significance of the difference in distribution of alleles between patients with type 1 diabetes and healthy control subjects was determined by χ2 method or Fisher’s exact probability test. P values were corrected for the number of different alleles tested (Pc). Statistical significance was defined as P < 0.05.

The predisposition of individual genotypes to type 1 diabetes was analyzed by multiple logistic regression. Initially, the saturated model was constructed. Then, several models considering the mode of contribution of each HLA DRB1-DQB1 haplotype were analyzed. For each model, twice the negative logarithmic likelihood ratio between the model under consideration and the saturated model was calculated as a deviance. The deviance is distributed asymptotically as a χ2 distribution with degrees of freedom equal to the difference in the number of parameters under the null hypothesis (i.e., the saturated model does not fit the data better than the model under consideration). Furthermore, the models were compared in respect of fit to the data using Akaike’s information criterion (AIC) (38). Logistic regression analysis was performed with the SPSS for Windows statistics program.

Frequencies of phenotypes and alleles of HLA-DRB1 and HLA-DQB1.

The phenotypic frequency of DRB1*0405 was significantly higher in patients with type 1 diabetes than in control subjects (Pc < 0.0001), and that of DRB1*1502 was significantly lower in patients than in control subjects (Pc < 0.000001) (Table 1). The phenotypic frequency of DQB1*0401 was significantly higher in patients with type 1 diabetes than in control subjects (Pc = 0.0003), and those of DQB1*0601 and *0602 were significantly lower in patients than in control subjects (Pc < 0.00001 and Pc = 0.008, respectively) (Table 1). The difference in phenotypic frequency of DRB1*0901 and DQB1*0303 was not significant (Pc > 0.05) (Table 1). The allele frequencies of DRB1*0405 and DQB1*0401 were significantly higher in patients with type 1 diabetes than in control subjects (Pc = 0.0001 and 0.003, respectively) (Table 2), and those of DRB1*1502, DQB1*0601, and *0602 were significantly lower in patients than in control subjects (Pc < 0.00001, Pc < 0.0001, and Pc = 0.011, respectively). In contrast, the allele frequencies of DRB1*0901 and DQB1*0303, whose phenotypic frequencies did not show a significant difference between patients and control subjects, were significantly higher in patients than in control subjects (Pc = 0.005 and 0.004, respectively).

Frequencies of phenotypes, chromosomes, and genotypes of DRB1-DQB1 haplotypes.

The phenotypic frequency of DRB1*0405-DQB1*0401 haplotype was significantly higher in patients than in control subjects (Pc = 0.0008) (Table 3), and those of DRB1*1501-DQB1*0602 and DRB1*1502-DQB1*0601 haplotypes were significantly lower in patients than in control subjects (Pc = 0.023 and Pc < 0.000001, respectively) (Table 3).

The chromosome frequency of DRB1*0405-DQB1*0401 haplotype was significantly higher in patients than in control subjects (Pc = 0.006) (Table 4), and those of DRB1*1501-DQB1*0602 and DRB1*1502-DQB1*0601 haplotypes were significantly lower in patients than in control subjects (Pc = 0.027 and Pc < 0.00001, respectively) (Table 4). The chromosome frequency of DRB1*0901-DQB1*0303 haplotype, whose phenotypic frequency did not show a significant difference between patients and control subjects, was significantly higher in patients than in control subjects (Pc = 0.017) (Table 4).

Table 5 shows the genotypic frequency of DRB1-DQB1 haplotype. The frequencies of DRB1*0405-DQB1*0401/DRB1*0802-DQB1*0302 and DRB1*0901-DQB1*0303/DRB1*0901-DQB1*0303 were significantly higher in patients than in control subjects.

Comparison of DR4 and DR9 haplotypes.

The differential association of phenotypes and genotypes with type 1 diabetes as observed for DR4 and DR9 suggests the importance of the genotypic combination of haplotypes in susceptibility to the disease. To clarify the difference in the genetic contribution of the two major HLA haplotypes, DR4 (DRB1*0405-DQB1*0401) and DR9 (DRB1*0901-DQB1*0303), to type 1 diabetes, we compared the frequencies of homozygotes and heterozygotes with the DR4 and/or DR9 haplotypes (Table 6). The frequencies of heterozygotes and homozygotes with the DR4 haplotype (DRB1*0405-DQB1*0401) were similarly higher in patients than in control subjects. In contrast, homozygotes, but not heterozygotes, with the DR9 haplotype (DRB1*0901-DQB1*0303) were more frequent in type 1 diabetic subjects than in control subjects.

Multiple logistic regression analysis.

To further investigate the differential association of the DR4 (DRB1*0405-DQB1*0401) and DR9 (DRB1*0901-DQB1*0303) haplotypes with type 1 diabetes, the predisposition to the disease expected by DR4- and/or DR9-containing genotypes was analyzed by multiple logistic regression (Table 7). In multiple logistic regression analysis, two models (dominant model and recessive model) were generated for the DR4 and DR9 haplotypes; therefore, four models were initially examined. Two models, the “DR4 recessive” model and “DR9 dominant” model, were rejected, while the other two models were not rejected (Table 7). We also made a combined “DR4 dominant, DR9 recessive” model. The combined model was not rejected (Table 7) and showed the smallest AIC value, indicating that it is the best fit for the data.

DRB1 genotype in the Korean population.

To confirm that the observation in Japanese is applicable to other ethnic groups, in particular those with the susceptible DR3 haplotype, the Korean population was studied (Table 8). The Korean population is unique in that the DR3 haplotype (DRB1*0301-DQB1*0201), which is absent in the Japanese population, is present in addition to Asian-specific DR4 (DRB1*0405-DQB1*0401) and DR9 (DRB1*0901-DQB1*0303) haplotypes. Therefore, the contribution of Asian-specific DR4 and DR9 haplotypes to type 1 diabetes susceptibility can be tested in the presence of the DR3 haplotype, a well-known susceptible haplotype in Caucasians. The frequencies of DRB1*0301, *0405, and *0901 alleles were significantly higher in patients with type 1 diabetes than in control subjects (Pc = 0.006, 0.03, and 0.0007, respectively). The frequencies of DRB1*0301/0405 (odds ratio [OR] 8.6), 0301/0901 (OR 15.2), 0405/0802 (OR 15.2), 0405/0901 (OR 18.9), and 0901/0901 (OR 10.4) were higher in patients than in control subjects. As in the case of Japanese, the frequencies of heterozygotes and homozygotes with DRB1*0405 were similarly higher in patients than in control subjects (OR 2.21 vs. 3.64), whereas homozygotes with DRB1*0901 were more strongly associated with type 1 diabetes than were heterozygotes (OR 13.3 vs. 3.06).

The results clearly demonstrated that the contribution of HLA haplotypes to the genetic susceptibility to type 1 diabetes differs depending on the combination of HLA haplotypes; i.e., DR4 haplotype (DRB1*0405-DQB1*0401) showed the best fit in a dominant model, whereas DR9 haplotype (DRB1*0901-DQB1*0303) fitted a recessive model. The recessive-like effect of the DR9 haplotype on disease susceptibility is supported by the observation that the DR9 haplotype confers much stronger susceptibility to type 1 diabetes when present in a homozygous state (OR 23.1) than in a heterozygous state (OR 1.0). High susceptibility conferred by a DR9 homozygous state was also observed in the Korean population in this study (OR 13.3) and in a previous study (OR 14.0) (39), indicating that susceptibility to type 1 diabetes in DR9 homozygotes is universal and that the DR9 haplotype is in itself susceptible to type 1 diabetes in the absence of other susceptible haplotypes. Although a DR9 heterozygous state in itself does not confer susceptibility to type 1 diabetes, DR9 heterozygotes with limited haplotypes, DRB1*0405-DQB1*0401 and DRB1*0802-DQB1*0302, are positively associated with type 1 diabetes. Thus, two doses of susceptible haplotypes are necessary for DR9-containing genotypes to confer susceptibility to type 1 diabetes.

In contrast to the strong susceptibility conferred by a DR9 homozygous state, homozygotes for Asian-specific DR4 haplotype (DRB1*0405-DQB1*0401) were only weakly associated with type 1 diabetes (OR 2.1), but the association with the disease was stronger in a heterozygous state (OR 2.8) (Table 6). When individual genotypes were considered, the DRB1*0405 heterozygous state conferred susceptibility to type 1 diabetes not only in combination with other susceptible haplotypes, such as DRB1*0802-DQB1*0302 (OR 24.2) and DRB1*0901-DQB1*0303 (OR 2.52), but also with neutral or even weakly protective haplotypes, such as DRB1*0101-DQB1*0501 (OR 1.84), DRB1*0803-DQB1*0601 (OR 3.69), and DRB1*1302-DQB1*0604 (OR 8.74), which were all negatively associated with the disease in DR9 heterozygotes (OR 0.39, 0.39, and 0.29, respectively). These data suggest the interaction of the DRB1*0405 haplotype with other haplotypes in conferring susceptibility to type 1 diabetes.

HLA class II DR and DQ molecules bind and present antigen peptides, which are derived from intracellular proteolysis of both foreign proteins and self proteins, to lymphocytes of the immune system. Molecular interactions between HLA-peptide complexes and the T-cell receptor are involved in selection of potentially autoreactive T-cell specificities, peripheral amplification of the potentially autoreactive T-cells, and specific antigen recognition in target organs. The interactions between peptides and HLA-DR/DQ molecules are determined by polymorphism in both the antigen peptide and the HLA molecule. Different HLA-DR/DQ molecules might have different binding affinity to disease-associated peptides. The overall effect of DR and DQ molecules on type 1 diabetes was suggested to be determined through binding competition of β-cell antigens among MHC molecules (40). This hypothesis may explain the molecular basis of the differential effect of DR4 and DR9 haplotypes on type 1 diabetes susceptibility observed in the present study. If class II molecules encoded by the DR4 haplotype have higher affinity to a diabetogenic peptide than those encoded by other haplotypes, then they may effectively bind and present the peptide to induce autoimmunity even in the presence of other class II molecules, and thus fit best in a dominant model. In contrast, if class II molecules encoded by the DR9 haplotype have lower affinity, they might show the strong susceptibility only in a homozygous state.

In Caucasians, the DR3 (DRB1*0301-DQB1*0201) and DR4 (DRB1*04-DQB1*0302) haplotypes are strongly associated with type 1 diabetes, with DR3/4 heterozygotes showing particularly strong susceptibility. Extensive analysis of genotypic combinations of HLA haplotypes in this study revealed that a synergistic effect of genotypes comparable to that in Caucasian DR3/4 was absent in the Japanese population. Although a combination of two susceptible haplotypes, such as DR4 and DR9, was positively associated with type 1 diabetes, it was no more susceptible than expected from two doses of susceptible allele (observed versus expected, 9.1 vs. 14.1%). The lack of synergistic effect in DR4/9 heterozygotes in Japanese can be explained by the trans complementation of DQ αβ heterodimer (4142). DQA1 allele on both the DR4 and DR9 haplotypes in Japanese is the same DQA1*0302, and therefore the DQαβ trans-dimer in DR4/9 individuals is the same as the cis-dimer. In Caucasian DR3/4 heterozygotes, in contrast, new trans-dimers, DQα/β 0301/0201 and DQα/β 0501/0302, are formed by trans complementation of the DQα chain encoded by DR3 and the DQβ chain encoded by DR4 haplotype, or vice versa (41,42), which is likely to contribute to the strong susceptibility conferred by a DR3/4 heterozygous state.

In contrast to the strong association of the DQB1*0302 allele with type 1 diabetes in Caucasian populations, DQB1*0302 in itself is not associated with type 1 diabetes in Japanese (Tables 1 and 2). Investigation of individual DRB1-DQB1 haplotypes, however, revealed that DQB1*0302 is as susceptible in Japanese as in Caucasians when present with susceptible DRB1 alleles, such as DRB1*0405 (OR 13.6), DRB1*0407 (OR 1.60), and DRB1*0802 (OR 6.04). The apparent lack of association between DQB1*0302 and type 1 diabetes in Japanese can be explained by the presence of DQB1*0302 haplotypes containing protective DRB1 alleles, such as DRB1*0403 and DRB1*0406, in the population (Tables 3 and 4). Previous studies in Chinese (26) and Korean (39) as well as Japanese (30) populations support this hypothesis.

Previous studies suggested that the DRB1*0405-DQB1*0401 haplotype might confer a strong predisposing effect to type 1 diabetes in Japanese (OR 3.4–4.4), while DRB1*0901-DQB1*0303 might confer a neutral or weak predisposing effect (OR 1.3–2.39) (30,32,43). In those reports, the association of haplotypes with type 1 diabetes was studied by the frequency of phenotypes, alleles, and/or haplotypes, but not by genotypic combinations, except for one study (30). In the present study, we analyzed the association by genotypic combination of haplotypes in addition to phenotypes, alleles, and haplotypes and found a differential effect of the DR4 (DRB1*0405-DQB1*0401) and DR9 (DRB1*0901-DQB1*0303) haplotypes in genotypic combination, conferring susceptibility to type 1 diabetes. Multiple logistic regression analysis of these data suggested that the DR4 haplotype predisposes in a dominant fashion, whereas the DR9 haplotype predisposes in a recessive fashion. These results emphasize the importance of genotypic combinations rather than alleles or haplotypes in determining the susceptibility to type 1 diabetes, and extensive analysis of genotypes, in addition to phenotypes and alleles, is therefore recommended for studies on HLA and disease association in general. The data further suggest the importance of low-incidence populations in the analysis of the genotypic contribution of susceptible haplotypes, whose effect can be masked by highly susceptible genotypes, such as DR 3/4 in Caucasian populations.

Although the responsible haplotypes were completely different from those in the present study in Japanese, a previous study in Caucasians reported that DR3 predisposes in a recessive-like fashion and DR4 in a dominant-like or intermediate fashion, after allowing for the DR 3/4 synergistic effect (44). Thus, when highly susceptible DR 3/4 heterozygotes are removed from the analysis, the different mode of inheritance as observed in Japanese can also be observed in high-incidence Caucasian populations.

In summary, the present study indicated that the contribution of HLA haplotypes to the genetic susceptibility to type 1 diabetes differs depending on the genotypic combination of HLA haplotypes: the DRB1*0405-DQB1*0401 haplotype showed best fit in a dominant model, whereas the DRB1*0901-DQB1*0303 haplotype fitted a recessive model. These results emphasize the importance of genotypic combination in addition to alleles and haplotypes in determining susceptibility to type 1 diabetes and suggest that extensive analysis of genotypes is important in studies on HLA and disease association in general.

TABLE 1

HLA-DRB1 and DQB1 phenotype in Japanese patients with type 1 diabetes and control subjects

Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1      
    *0405 79 (59.8) 48 (30.6) 3.38 <0.000001 <0.0001 
    *0901 49 (37.1) 40 (25.5) 1.73 0.033 NS 
    *0802 20 (15.2) 8 (5.1) 3.32 0.004 NS 
    *1501 3 (2.3) 15 (9.6) 0.22 0.011 NS 
    *1502 5 (3.8) 45 (28.7) 0.1 <0.0000001 <0.000001 
DQB1      
    *0401 72 (54.5) 47 (29.9) 2.81 <0.0001 0.0003 
    *0303 52 (39.4) 43 (27.4) 1.72 0.030 NS 
    *0302 37 (28.0) 25 (15.9) 2.06 0.013 NS 
    *0601 17 (12.9) 62 (39.5) 0.23 <0.000001 <0.00001 
    *0602 1 (0.8) 16 (10.2) 0.07 0.0006 0.008 
Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1      
    *0405 79 (59.8) 48 (30.6) 3.38 <0.000001 <0.0001 
    *0901 49 (37.1) 40 (25.5) 1.73 0.033 NS 
    *0802 20 (15.2) 8 (5.1) 3.32 0.004 NS 
    *1501 3 (2.3) 15 (9.6) 0.22 0.011 NS 
    *1502 5 (3.8) 45 (28.7) 0.1 <0.0000001 <0.000001 
DQB1      
    *0401 72 (54.5) 47 (29.9) 2.81 <0.0001 0.0003 
    *0303 52 (39.4) 43 (27.4) 1.72 0.030 NS 
    *0302 37 (28.0) 25 (15.9) 2.06 0.013 NS 
    *0601 17 (12.9) 62 (39.5) 0.23 <0.000001 <0.00001 
    *0602 1 (0.8) 16 (10.2) 0.07 0.0006 0.008 

Data are n (%).

TABLE 2

HLA-DRB1 and DQB1 allele in Japanese patients with type 1 diabetes and control subjects

Patients (n = 264)Control subjects (n = 314)ORPPc
DRB1      
    *0405 89 (33.7) 54 (17.2) 2.45 <0.00001 0.0001 
    *0901 67 (25.4) 41 (13.1) 2.26 0.0002 0.005 
    *0802 20 (7.6) 8 (2.5) 3.14 0.005 NS 
    *1501 3 (1.1) 15 (4.8) 0.23 0.012 NS 
    *1502 5 (1.9) 46 (14.6) 0.11 <0.0000001 <0.00001 
    Others 80 (30.3) 150 (47.8)    
DQB1      
    *0401 79 (29.9) 53 (16.9) 2.10 0.0002 0.003 
    *0303 69 (26.1) 44 (14.0) 2.17 0.0003 0.004 
    *0302 39 (14.8) 26 (8.3) 1.92 0.0139 NS 
    *0601 18 (6.8) 65 (20.7) 0.28 <0.00001 <0.0001 
    *0602 1 (0.4) 16 (5.1) 0.07 0.0008 0.011 
    Others 58 (22.0) 110 (35.0)    
Patients (n = 264)Control subjects (n = 314)ORPPc
DRB1      
    *0405 89 (33.7) 54 (17.2) 2.45 <0.00001 0.0001 
    *0901 67 (25.4) 41 (13.1) 2.26 0.0002 0.005 
    *0802 20 (7.6) 8 (2.5) 3.14 0.005 NS 
    *1501 3 (1.1) 15 (4.8) 0.23 0.012 NS 
    *1502 5 (1.9) 46 (14.6) 0.11 <0.0000001 <0.00001 
    Others 80 (30.3) 150 (47.8)    
DQB1      
    *0401 79 (29.9) 53 (16.9) 2.10 0.0002 0.003 
    *0303 69 (26.1) 44 (14.0) 2.17 0.0003 0.004 
    *0302 39 (14.8) 26 (8.3) 1.92 0.0139 NS 
    *0601 18 (6.8) 65 (20.7) 0.28 <0.00001 <0.0001 
    *0602 1 (0.4) 16 (5.1) 0.07 0.0008 0.011 
    Others 58 (22.0) 110 (35.0)    

Data are n (%).

TABLE 3

Phenotype frequency of DRB1-DQB1 haplotype in Japanese patients with type 1 diabetes and control subjects

Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1*0101-DQB1*0501 12 (9.1) 26 (16.6) — — — 
DRB1*0403-DQB1*0302 4 (3.0) 6 (3.8) — — — 
DRB1*0405-DQB1*0302 5 (3.8) 0 (0.0) 13.59 0.019 NS 
DRB1*0405-DQB1*0401 71 (53.8) 47 (29.9) 2.72 <0.0001 0.0008 
DRB1*0406-DQB1*0302 1 (0.8) 9 (5.7) 0.13 0.024 NS 
DRB1*0407-DQB1*0302 4 (3.0) 3 (1.9) — — — 
DRB1*0410-DQB1*0402 1 (0.8) 4 (2.5) — — — 
DRB1*0802-DQB1*0302 18 (13.6) 4 (2.5) 6.04 0.0004 0.0084 
DRB1*0802-DQB1*0402 2 (1.5) 4 (2.5) — — — 
DRB1*0803-DQB1*0601 10 (7.6) 18 (11.5) — — — 
DRB1*0901-DQB1*0303 46 (34.8) 40 (25.5) — — — 
DRB1*1001-DQB1*0501 2 (1.5) 6 (3.8) — — — 
DRB1*1101-DQB1*0301 1 (0.8) 7 (4.5) — — — 
DRB1*1201-DQB1*0301 5 (3.8) 12 (7.6) — — — 
DRB1*1201-DQB1*0303 5 (3.8) 2 (1.3) — — — 
DRB1*1202-DQB1*0301 3 (2.3) 5 (3.2) — — — 
DRB1*1302-DQB1*0604 18 (13.6) 15 (9.6) — — — 
DRB1*1401-DQB1*0502 1 (0.8) 5 (3.2) — — — 
DRB1*1401-DQB1*0503 0 (0.0) 6 (3.8) 0.09 0.033 NS 
DRB1*1501-DQB1*0602 1 (0.8) 15 (9.6) 0.07 0.001 0.023 
DRB1*1502-DQB1*0601 5 (3.8) 45 (28.7) 0.10 <0.0000001 <0.000001 
Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1*0101-DQB1*0501 12 (9.1) 26 (16.6) — — — 
DRB1*0403-DQB1*0302 4 (3.0) 6 (3.8) — — — 
DRB1*0405-DQB1*0302 5 (3.8) 0 (0.0) 13.59 0.019 NS 
DRB1*0405-DQB1*0401 71 (53.8) 47 (29.9) 2.72 <0.0001 0.0008 
DRB1*0406-DQB1*0302 1 (0.8) 9 (5.7) 0.13 0.024 NS 
DRB1*0407-DQB1*0302 4 (3.0) 3 (1.9) — — — 
DRB1*0410-DQB1*0402 1 (0.8) 4 (2.5) — — — 
DRB1*0802-DQB1*0302 18 (13.6) 4 (2.5) 6.04 0.0004 0.0084 
DRB1*0802-DQB1*0402 2 (1.5) 4 (2.5) — — — 
DRB1*0803-DQB1*0601 10 (7.6) 18 (11.5) — — — 
DRB1*0901-DQB1*0303 46 (34.8) 40 (25.5) — — — 
DRB1*1001-DQB1*0501 2 (1.5) 6 (3.8) — — — 
DRB1*1101-DQB1*0301 1 (0.8) 7 (4.5) — — — 
DRB1*1201-DQB1*0301 5 (3.8) 12 (7.6) — — — 
DRB1*1201-DQB1*0303 5 (3.8) 2 (1.3) — — — 
DRB1*1202-DQB1*0301 3 (2.3) 5 (3.2) — — — 
DRB1*1302-DQB1*0604 18 (13.6) 15 (9.6) — — — 
DRB1*1401-DQB1*0502 1 (0.8) 5 (3.2) — — — 
DRB1*1401-DQB1*0503 0 (0.0) 6 (3.8) 0.09 0.033 NS 
DRB1*1501-DQB1*0602 1 (0.8) 15 (9.6) 0.07 0.001 0.023 
DRB1*1502-DQB1*0601 5 (3.8) 45 (28.7) 0.10 <0.0000001 <0.000001 

Data are n (%). Genotypes, whose total frequencies in both patients and control subjects were five or more than five, are listed in this table.

TABLE 4

Chromosome frequency of DRB1-DQB1 haplotype in Japanese patients with type 1 diabetes and control subjects

Patients (n = 264)Control subjects (n = 314)ORPPc
DRB1*0101-DQB1*0501 12 (4.5) 29 (9.2) 0.47 0.029 NS 
DRB1*0403-DQB1*0302 4 (1.5) 6 (1.9) — — — 
DRB1*0405-DQB1*0302 5 (1.9) 0 (0.0) 13.33 0.020 NS 
DRB1*0405-DQB1*0401 78 (29.5) 53 (16.9) 2.07 0.0003 0.006 
DRB1*0406-DQB1*0302 1 (0.4) 10 (3.2) 0.12 0.014 NS 
DRB1*0407-DQB1*0302 4 (1.5) 3 (1.0) — — — 
DRB1*0410-DQB1*0402 1 (0.4) 4 (1.3) — — — 
DRB1*0802-DQB1*0302 18 (6.8) 4 (1.3) 5.67 0.0005 0.011 
DRB1*0802-DQB1*0402 2 (0.8) 4 (1.3) — — — 
DRB1*0803-DQB1*0601 11 (4.2) 18 (5.7) — — — 
DRB1*0901-DQB1*0303 63 (23.9) 41 (13.1) 2.09 0.0008 0.017 
DRB1*1001-DQB1*0501 2 (0.8) 6 (1.9) — — — 
DRB1*1101-DQB1*0301 1 (0.4) 7 (2.2) — — — 
DRB1*1201-DQB1*0301 5 (1.9) 12 (3.8) — — — 
DRB1*1201-DQB1*0303 5 (1.9) 2 (0.6) — — — 
DRB1*1202-DQB1*0301 3 (1.1) 5 (1.6) — — — 
DRB1*1302-DQB1*0604 18 (6.8) 16 (5.1) — — — 
DRB1*1401-DQB1*0502 1 (0.4) 5 (1.6) — — — 
DRB1*1401-DQB1*0503 0 (0.0) 6 (1.9) 0.09 0.034 NS 
DRB1*1501-DQB1*0602 1 (0.4) 15 (4.8) 0.08 0.001 0.027 
DRB1*1502-DQB1*0601 5 (1.9) 46 (14.6) 0.11 <0.0000001 <0.00001 
    Others 24 (9.1) 22 (7.0)    
Patients (n = 264)Control subjects (n = 314)ORPPc
DRB1*0101-DQB1*0501 12 (4.5) 29 (9.2) 0.47 0.029 NS 
DRB1*0403-DQB1*0302 4 (1.5) 6 (1.9) — — — 
DRB1*0405-DQB1*0302 5 (1.9) 0 (0.0) 13.33 0.020 NS 
DRB1*0405-DQB1*0401 78 (29.5) 53 (16.9) 2.07 0.0003 0.006 
DRB1*0406-DQB1*0302 1 (0.4) 10 (3.2) 0.12 0.014 NS 
DRB1*0407-DQB1*0302 4 (1.5) 3 (1.0) — — — 
DRB1*0410-DQB1*0402 1 (0.4) 4 (1.3) — — — 
DRB1*0802-DQB1*0302 18 (6.8) 4 (1.3) 5.67 0.0005 0.011 
DRB1*0802-DQB1*0402 2 (0.8) 4 (1.3) — — — 
DRB1*0803-DQB1*0601 11 (4.2) 18 (5.7) — — — 
DRB1*0901-DQB1*0303 63 (23.9) 41 (13.1) 2.09 0.0008 0.017 
DRB1*1001-DQB1*0501 2 (0.8) 6 (1.9) — — — 
DRB1*1101-DQB1*0301 1 (0.4) 7 (2.2) — — — 
DRB1*1201-DQB1*0301 5 (1.9) 12 (3.8) — — — 
DRB1*1201-DQB1*0303 5 (1.9) 2 (0.6) — — — 
DRB1*1202-DQB1*0301 3 (1.1) 5 (1.6) — — — 
DRB1*1302-DQB1*0604 18 (6.8) 16 (5.1) — — — 
DRB1*1401-DQB1*0502 1 (0.4) 5 (1.6) — — — 
DRB1*1401-DQB1*0503 0 (0.0) 6 (1.9) 0.09 0.034 NS 
DRB1*1501-DQB1*0602 1 (0.4) 15 (4.8) 0.08 0.001 0.027 
DRB1*1502-DQB1*0601 5 (1.9) 46 (14.6) 0.11 <0.0000001 <0.00001 
    Others 24 (9.1) 22 (7.0)    

Data are n (%). “Others” contain rare genotypes, whose total frequencies in both patients and control subjects were less than five.

TABLE 5

Genotypic combination of DRB1-DQB1 haplotype in Japanese patients with type 1 diabetes and control subjects

Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1*0101-DQB1*0501/DRB1*0101-DQB1*0501 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*0101-DQB1*0501 9 (6.8) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*0405-DQB1*0401 7 (5.3) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*0407-DQB1*0302 4 (3.0) 0 (0.0) 11.03 0.042 NS 
DRB1*0405-DQB1*0401/DRB1*0802-DQB1*0302 9 (6.8) 0 (0.0) 24.23 0.0007 0.017 
DRB1*0405-DQB1*0401/DRB1*0803-DQB1*0601 6 (4.5) 2 (1.3) — — — 
DRB1*0405-DQB1*0401/DRB1*0901-DQB1*0303 12 (9.1) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*1001-DQB1*0501 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1101-DQB1*0301 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1201-DQB1*0301 1 (0.8) 2 (1.3) — — — 
DRB1*0405-DQB1*0401/DRB1*1302-DQB1*0604 7 (5.3) 1 (0.6) 8.74 0.026 NS 
DRB1*0405-DQB1*0401/DRB1*1501-DQB1*0602 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1502-DQB1*0601 3 (2.3) 5 (3.2) — — — 
DRB1*0405-DQB1*0401/DRB1*1602-DQB1*0502 1 (0.8) 2 (1.3) — — — 
DRB1*0802-DQB1*0302/DRB1*0901-DQB1*0303 4 (3.0) 1 (0.6) — — — 
DRB1*0901-DQB1*0303/DRB1*0101-DQB1*0501 1 (0.8) 3 (1.9) — — — 
DRB1*0901-DQB1*0303/DRB1*0803-DQB1*0601 1 (0.8) 3 (1.9) — — — 
DRB1*0901-DQB1*0303/DRB1*0901-DQB1*0303 17 (12.9) 1 (0.6) 23.06 <0.0001 0.0005 
DRB1*0901-DQB1*0303/DRB1*1201-DQB1*0301 3 (2.3) 0 (0.0) — — — 
DRB1*0901-DQB1*0303/DRB1*1302-DQB1*0604 1 (0.8) 4 (2.5) — — — 
DRB1*0901-DQB1*0303/DRB1*1502-DQB1*0601 0 (0.0) 10 (6.4) 0.05 0.0023 NS 
DRB1*1502-DQB1*0601/DRB1*0101-DQB1*0501 0 (0.0) 5 (3.2) — — — 
DRB1*1502-DQB1*0601/DRB1*1302-DQB1*0604 0 (0.0) 4 (2.5) — — — 
DRB1*1502-DQB1*0601/DRB1*1401-DQB1*0502 1 (0.8) 3 (1.9) — — — 
    Others 45 (34.1) 56 (35.7)    
Patients (n = 132)Control subjects (n = 157)ORPPc
DRB1*0101-DQB1*0501/DRB1*0101-DQB1*0501 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*0101-DQB1*0501 9 (6.8) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*0405-DQB1*0401 7 (5.3) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*0407-DQB1*0302 4 (3.0) 0 (0.0) 11.03 0.042 NS 
DRB1*0405-DQB1*0401/DRB1*0802-DQB1*0302 9 (6.8) 0 (0.0) 24.23 0.0007 0.017 
DRB1*0405-DQB1*0401/DRB1*0803-DQB1*0601 6 (4.5) 2 (1.3) — — — 
DRB1*0405-DQB1*0401/DRB1*0901-DQB1*0303 12 (9.1) 6 (3.8) — — — 
DRB1*0405-DQB1*0401/DRB1*1001-DQB1*0501 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1101-DQB1*0301 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1201-DQB1*0301 1 (0.8) 2 (1.3) — — — 
DRB1*0405-DQB1*0401/DRB1*1302-DQB1*0604 7 (5.3) 1 (0.6) 8.74 0.026 NS 
DRB1*0405-DQB1*0401/DRB1*1501-DQB1*0602 0 (0.0) 3 (1.9) — — — 
DRB1*0405-DQB1*0401/DRB1*1502-DQB1*0601 3 (2.3) 5 (3.2) — — — 
DRB1*0405-DQB1*0401/DRB1*1602-DQB1*0502 1 (0.8) 2 (1.3) — — — 
DRB1*0802-DQB1*0302/DRB1*0901-DQB1*0303 4 (3.0) 1 (0.6) — — — 
DRB1*0901-DQB1*0303/DRB1*0101-DQB1*0501 1 (0.8) 3 (1.9) — — — 
DRB1*0901-DQB1*0303/DRB1*0803-DQB1*0601 1 (0.8) 3 (1.9) — — — 
DRB1*0901-DQB1*0303/DRB1*0901-DQB1*0303 17 (12.9) 1 (0.6) 23.06 <0.0001 0.0005 
DRB1*0901-DQB1*0303/DRB1*1201-DQB1*0301 3 (2.3) 0 (0.0) — — — 
DRB1*0901-DQB1*0303/DRB1*1302-DQB1*0604 1 (0.8) 4 (2.5) — — — 
DRB1*0901-DQB1*0303/DRB1*1502-DQB1*0601 0 (0.0) 10 (6.4) 0.05 0.0023 NS 
DRB1*1502-DQB1*0601/DRB1*0101-DQB1*0501 0 (0.0) 5 (3.2) — — — 
DRB1*1502-DQB1*0601/DRB1*1302-DQB1*0604 0 (0.0) 4 (2.5) — — — 
DRB1*1502-DQB1*0601/DRB1*1401-DQB1*0502 1 (0.8) 3 (1.9) — — — 
    Others 45 (34.1) 56 (35.7)    

Data are n (%). “Others” contain rare genotypes, whose total frequencies in both patients and control were less than three.

TABLE 6

Frequencies of homozygotes and heterozygotes with DR4 and/or DR9 haplotypes in Japanese patients with type 1 diabetes and control subjects

Patients (n = 132)Control (n = 157)OR
DRB1*0405-DQB1*0401 /DRB1*0405-DQB1*0401 7 (5.3) 6 (3.8) 2.10 
DRB1*0405-DQB1*0401     /X 64 (48.5) 41 (26.1) 2.81 
    X/X 61 (46.2) 110 (70.1)  
DRB1*0901-DQB1*0303     /DRB1*0901-DQB1*0303 17 (12.9) 1 (0.6) 23.1 
DRB1*0901-DQB1*0303     /Y 29 (22.0) 39 (24.8) 1.01 
    Y/Y 86 (65.2) 117 (74.5)  
Patients (n = 132)Control (n = 157)OR
DRB1*0405-DQB1*0401 /DRB1*0405-DQB1*0401 7 (5.3) 6 (3.8) 2.10 
DRB1*0405-DQB1*0401     /X 64 (48.5) 41 (26.1) 2.81 
    X/X 61 (46.2) 110 (70.1)  
DRB1*0901-DQB1*0303     /DRB1*0901-DQB1*0303 17 (12.9) 1 (0.6) 23.1 
DRB1*0901-DQB1*0303     /Y 29 (22.0) 39 (24.8) 1.01 
    Y/Y 86 (65.2) 117 (74.5)  

Data are n (%). X does not contain DRB1*0405-DQB1*0401. Y does not contain DRB1*0901-DQB1*0303.

TABLE 7

Results of multiple regression analysis

ModelDeviancedfPAIC
Saturated model    357.75 
DR4 dominant 0.54 NS 354.30 
DR4 recessive 28.93 <0.000001 382.68 
DR9 dominant 24.06 <0.00001 377.81 
DR9 recessive 1.48 NS 355.23 
DR4 dominant, DR9 recessive 1.72 NS 353.47 
ModelDeviancedfPAIC
Saturated model    357.75 
DR4 dominant 0.54 NS 354.30 
DR4 recessive 28.93 <0.000001 382.68 
DR9 dominant 24.06 <0.00001 377.81 
DR9 recessive 1.48 NS 355.23 
DR4 dominant, DR9 recessive 1.72 NS 353.47 

DR4: DRB1*0405-DQB1*0401; DR9: DRB1*0901-DQB1*0303. df, degrees of freedom. The saturated model is as follows:log{p/(1 − p)} = b0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 x1: DR4/D R4, x2: DR9/DR9, x3: DR4/DR9, x4: DR4/DRX, x5: DR9/DRX (DRX: DR other than DR4 or DR9) DR4 dominant: a1 = a3 = a4 DR4 recessive: a3 = a5, a4 = 0 DR9 dominant: a2 = a3 = a5 DR9 recessive: a3 = a4, a5 = 0 Dr4 dominant, DR9 recessive: a1 = a3 = a4, a5 = 0.

TABLE 8

Frequencies of homozygotes and heterozygotes with DRB1*0405 and/or DRB1*0901 in Korean patients with type 1 diabetes and control subjects

Patients (n = 67)Control (n = 109)OR
DRB1*0405/DRB1*0405 2 (3.0) 2 (1.8) 2.21 
DRB1*0405/X 23 (34.3) 14 (12.8) 3.64 
DRB1*0901/DRB1*0901 6 (9.0) 1 (0.9) 13.3 
DRB1*0901/Y 18 (26.9) 13 (11.9) 3.06 
Patients (n = 67)Control (n = 109)OR
DRB1*0405/DRB1*0405 2 (3.0) 2 (1.8) 2.21 
DRB1*0405/X 23 (34.3) 14 (12.8) 3.64 
DRB1*0901/DRB1*0901 6 (9.0) 1 (0.9) 13.3 
DRB1*0901/Y 18 (26.9) 13 (11.9) 3.06 

Data are n (%). X does not contain DRB1*0405; Y does not contain DRB1*0901.

This study was supported by a grant-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture and health sciences research grants (Research on Human Genome and Gene Therapy) from the Ministry of Health and Welfare, Japan. We thank Dr. John A. Todd for critical review of the manuscript. All experiments were performed in compliance with the current laws of Japan.

1
Bottazzo GF: β-Cell damage in diabetic insulitis: are we approaching a solution?
Diabetologia
26
:
241
–249,
1984
2
Eisenbarth GS: Type I diabetes mellitus: a chronic autoimmune disease.
N Engl J Med
314
:
1360
–1368,
1986
3
Atkinson MA, Maclaren NK: The pathogenesis of insulin-dependent diabetes mellitus.
N Engl J Med
331
:
1428
–1436,
1994
4
Todd JA, Aitman TJ, Cornall RJ, Ghosh S, Hall JRS, Hearne CM, Knight AM, Love JM, McAleer MA, Prins J-B, Rodrigues N, Lathrop M, Pressey A, Delarato NH, Peterson LB, Wicker LS: Genetic analysis of autoimmune type 1 diabetes mellitus in mice.
Nature
351
:
542
–547,
1991
5
Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SCL, Jenkins SC, Palmer SM, Balfour KM, Rowe BR, Farrall M, Barnett AH, Bain SC, Todd JA: A genome-wide search for human type 1 diabetes susceptibility genes.
Nature
371
:
130
–136,
1994
6
Hashimoto L, Habita C, Beressi JP, Delepine M, Besse C, Cambon-Thomsen A, Deschamps I, Rotter JI, Djoulah S, James MR, Froguel P, Weissenbach J, Lathrop GM, Julier C: Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome 11q.
Nature
371
:
161
–164,
1994
7
Concannon P, Gogolin-Ewens KJ, Hinds DA, Wapelhorst B, Morrison VA, Stirling B, Mitra M, Farmer J, Williams SR, Cox NJ, Bell GI, Risch N, Spielman RS: A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus.
Nat Genet
19
:
292
–296,
1998
8
Mein CA, Esposito L, Dunn MG, Johnson GCL, Timms AE, Goy JV, Smith AN, Sebag-Montefiore L, Merriman ME, Wilson AJ, Pritchard LE, Cucca F, Barnett AH, Bain SC, Todd JA: A search for type 1 diabetes susceptibility genes in families from the United Kingdom.
Nat Genet
19
:
297
–300,
1998
9
Singal DP, Blajchman MA: Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus.
Diabetes
22
:
429
–432,
1973
10
Nerup J, Platz P, Anderson OO, Christy M, Lyngsøe J, Poulsen JE, Ryder LP, Nielsen LS, Thomsen M, Svejgaard A: HL-A antigens and diabetes mellitus.
Lancet
2
:
864
–866,
1974
11
Cudworth AG, Woodrow JC: HL-A system and diabetes mellitus.
Diabetes
24
:
345
–349,
1975
12
Platz P, Jakobsen BK, Morling N, Ryder LP, Svejgaard A, Thomsen M, Christy M, Kromann H, Benn J, Nerup J, Green A, Hauge M: HLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitus.
Diabetologia
21
:
108
–115,
1981
13
Wolf E, Spencer KM, Cudworth AG: The genetic susceptibility to type 1 (insulin-dependent) diabetes: analysis of the HLA-DR association.
Diabetologia
24
:
224
–230,
1983
14
Baisch JM, Weeks T, Giles R, Hoover M, Stastny P, Capra JD: Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus.
N Engl J Med
322
:
1836
–1841,
1990
15
Todd JA, Bell JI, McDevitt HO: HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus.
Nature
329
:
599
–604,
1987
16
Todd JA, Mijovic C, Fletcher J, Jenkins D, Bradwell AR, Barnett AH: Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping.
Nature
338
:
587
–589,
1989
17
Thorsby E, Rønningen KS: Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus.
Diabetologia
36
:
371
–377,
1993
18
Erlich HA, Bugawan TL, Scharf S, Nepom GT, Tait B, Griffith RL: HLA-DQβ sequence polymorphism and genetic susceptibility to IDDM.
Diabetes
39
:
96
–103,
1990
19
Erlich HA, Griffith RL, Bugawan TL, Ziegler R, Alper C, Eisenbarth G: Implication of specific DQB1 alleles in genetic susceptibility and resistance by identification of IDDM siblings with novel HLA-DQB1 allele and unusual DR2 and DR1 haplotypes.
Diabetes
40
:
478
–481,
1991
20
Khalil I, d’Auriol L, Gobet M, Morin L, Lepage V, Deschamps I, Park MS, Degos L, Galibert F, Hors J: A combination of HLA-DQβ Asp57-negative and HLA DQα Arg52 confers susceptibility to insulin-dependent diabetes mellitus.
J Clin Invest
85
:
1315
–1319,
1990
21
Khalil I, Deschamps I, Lepage V, Al-Daccak R, Degos L, Hors J: Dose effect of cis- and trans-encoded HLA-DQαβ heterodimers in IDDM susceptibility.
Diabetes
41
:
378
–384,
1992
22
Nepom BS, Palmer J, Kim SJ, Hansen JA, Holbeck SL, Nepom GT: Specific genomic markers for the HLA-DQ subregion discriminate between DR4+ insulin-dependent diabetes mellitus and DR4+ seropositive juvenile rheumatoid arthritis.
J Exp Med
164
:
345
–350,
1986
23
Sheehy MJ, Sharf SJ, Rowe JR, Neme de Gimenez MH, Meske LM, Erlich HA, Nepom BS: A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles.
J Clin Invest
83
:
830
–835,
1989
24
Erlich HA, Zeidler A, Chang J, Shaw S, Raffel LJ, Klitz W, Beshokov Y, Costin G, Pressman S, Bugawan T, Rotter JI: HLA class II alleles and susceptibility and resistance to insulin dependent diabetes mellitus in Mexican-American families.
Nat Genet
3
:
358
–364,
1993
25
Kockum I, Wassmuth R, Holmberg E, Michelsen B, Lernmark ˚A: HLA-DQ primarily confers protection and HLA-DR susceptibility in type 1 (insulin-dependent) diabetes studied in population-based affected families and controls.
Am J Hum Genet
53
:
150
–167,
1993
26
Huang H-S, Peng J-T, She JY, Zhang L-P, Chao CCK, Liu K-H, She J-X: HLA-encoded susceptibility to insulin-dependent diabetes mellitus is determined by DR and DQ genes as well as their linkage disequilibria in a Chinese population.
Hum Immunol
44
:
210
–219,
1995
27
Cucca F, Lampis R, Frau F, Macis D, Angius E, Masile P, Chessa M, Frongia P, Silvetti M, Cao A, Stefano de Virgiliis, Congia M: The distribution of DR4 haplotypes in Sardinia suggests a primary association of type 1 diabetes with DRB1 and DQB1 loci.
Hum Immunol
43
:
301
–308,
1995
28
Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA: The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families.
Am J Hum Genet
59
:
1134
–1148,
1996
29
She J-X: Susceptibility to type I diabetes: HLA-DQ and DR revisited.
Immunol Today
17
:
323
–329,
1996
30
Awata T, Kuzuya T, Matsuda A, Iwamoto Y, Kanazawa Y: Genetic analysis of HLA class II alleles and susceptibility to type 1 (insulin-dependent) diabetes mellitus in Japanese subjects.
Diabetologia
35
:
419
–424,
1992
31
Ikegami H, Kawaguchi Y, Yamato E, Kuwata S, Tokunaga K, Noma Y, Shima K, Ogihara T: Analysis by the polymerase chain reaction of histocompatibility leukocyte antigen-DR9-linked susceptibility to insulin-dependent diabetes mellitus.
J Clin Endocrinol Metab
75
:
1381
–1385,
1992
32
Yasunaga S, Kimura A, Hamaguchi K, Rønningen KS, Sasazuki T: Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to insulin-dependent diabetes mellitus (IDDM).
Tissue Antigens
47
:
37
–48,
1996
33
Ota M, Seki T, Fukushima H, Tsuji K, Inoko H: HLA-DRB1 genotyping by modified PCR-RFLP method combined with group-specific primers.
Tissue Antigens
39
:
187
–202,
1992
34
Kaneshige T, Hashimoto M, Matsumoto Y, Kinoshita T, Hirasawa T, Uchida K, Inoko H: Serologic and nucleotide sequencing analyses of a novel DR52-associated DRB1 allele with the DR ‘NJ25′ specificity, designated DRB1*1307.
Hum Immunol
41
:
151
–159,
1994
35
Moribe T, Kaneshige T, Hirakata M, Mimori T, Akitsuki M, Inoko H: Identification of a DRB1*0405 variant (DRB1*04052) using the PCR-RFLP method.
Tissue Antigens
47
:
450
–453,
1996
36
Sengar DPS, Goldstein R: Comprehensive typing of DQB1 alleles by PCR-RFLP.
Tissue Antigens
43
:
242
–248,
1994
37
Imanishi T, Akaza T, Kimura A, Tokunaga K, Gojobori T: Allele and haplotype frequencies for HLA and complement loci in various ethnic groups. In
HLA 1991: Proceedings of the Eleventh International Histocompatibility Workshop and Conference.
Tsuji K, Aizawa M, Sasazuki T, Eds. Oxford, U.K., Oxford University Press,
1992
, p.
1065
–1220,
38
Akaike H: Factor analysis and AIC.
Psychometrika
52
:
317
–332,
1987
39
Park YS, Wang CY, Ko KW, Yang SW, Park M, Yang MCK, She JX: Combinations of HLA DR and DQ molecules determine the susceptibility to insulin-dependent diabetes mellitus in Koreans.
Hum Immunol
59
:
794
–801,
1998
40
Nepom GT: A unified hypothesis for the complex genetics of HLA associations with IDDM.
Diabetes
39
:
1153
–1157,
1990
41
Nepom BS, Schwarz D, Palmer JP, Nepom GT: Transcomplementation of HLA genes in IDDM. HLA-DQ α- and β-chains produce hybrid molecules in DR3/4 heterozygotes.
Diabetes
36
:
114
–117,
1987
42
Rønningen KS, Gjertsen HA, Iwe T, Spurkland A, Hansen T, Thorsby E: Particular HLA-DQ αβ heterodimer associated with IDDM susceptibility in both DR4-DQw4 Japanese and DR4-DQw8/DRw8-DQw4 whites.
Diabetes
40
:
759
–763,
1991
43
Maruyama T, Shimada A, Kasuga A, Kasatani T, Ozawa Y, Ishii M, Takei I, Suzuki Y, Kobayashi A, Takeda S, Matsubara K, Saruta T: Analysis of MHC class II antigens in Japanese IDDM by a novel HLA-typing method, hybridization protection assay.
Diabetes Res Clin Pract
23
:
77
–84,
1994
44
Thomson G, Robinson WP, Kuhner MK, Joe S, MacDonald MJ, Gottschall JL, Barbosa J, Rich SS, Bertrams J, Baur MP, Partanen J, Tait BD, Schober E, Mayr WR, Ludvigsson J, Lindblom B, Farid NR, Thompson C, Deschamps I: Genetic heterogeneity, modes of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus.
Am J Hum Genet
43
:
799
–816,
1988

Address correspondence and reprint requests to H. Ikegami, Department of Geriatric Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: ikegami@geriat.med.osaka-u.ac.jp.

Received for publication 29 March 2001 and accepted in revised form 5 November 2001.

AIC, Akaike’s information criterion; MHC, major histocompatibility complex; OR, odds ratio; Pc, corrected P value.